editor's blog
Subscribe Now

Building Better Wizards

Wizards are becoming more and more prevalent. Lest you’re concerned that Dumbledore’s relatives are coming to exact revenge, fear not: we speak here of wizards in the GUI (as opposed to gooey) sense. Yes, there are bastions of holdouts that cling to command line interfaces as a measure of their hacker bona fides, but there are solid reasons to like a well-designed wizard.

And “well-designed” is the operative phrase here. You may think of a wizard as no more than a way to simplify processes that could just as effectively be done using the command line if only you were boss enough to remember all the arcane intentionally-obscure commands required to get stuff done. And in some cases, such automation is the goal. But the potential goes beyond that: it’s an opportunity for a world-view transformation.

This is a favorite old topic of mine, but it was refreshed for me while watching a Movea SmartFusion Studio demo: when assembling a sensor fusion algorithm, a wide variety of filters are made available. And I thought, “How do you know which filter to pick??”

Now, you could easily argue that, if you don’t know your filters, then you have no business getting involved in sensor fusion. Perhaps. But really, a designer is interested in a behavior, not necessarily in knowing the details of how that behavior is implemented in some specific algorithm or circuit.

This became really clear to me several years ago on a consulting project where I was designing and prototyping a wizard for a piece of communication IP. The IP was very flexible, so there were lots of options that the user, who would be a system designer, could tweak. The obvious first approach to the wizard was simply to provide option fields for the user to fill in.

Being a communication protocol, it had FIFOs for elasticity; the user could dial up how big those FIFOs were to be. So I put a text field there for the size of the FIFO. But I asked the designers of the IP, “How should the user figure out how big the FIFO should be?” My first thought was that this information would be useful in the user manual. (Stop laughing… I’m sure someone reads those…)

They answered that the user would decide how many packets they wanted to buffer; that and the selectable packet size would determine the FIFO size. Simple enough.

But then I thought, “Wait, why are we making the user of this wizard do some paper-and-pencil calculations before going back to the computer? What if, instead of asking for the FIFO size, we asked for the number of packets?” The wizard already had the packet size somewhere else, so it then had all the information needed to calculate the FIFO size. No paper or pencil required.

Leave a Reply

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Shift Left with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens investigate the details of Calibre’s shift-left strategy. They take a closer look at how the tools and techniques in this design tool suite can help reduce signoff iterations and time to tapeout while also increasing design quality.
Nov 27, 2023
61,785 views