editor's blog
Subscribe Now

450 In Belgium

Changing wafer size is a big deal. You can kiss all your old equipment good-bye and usher in a whole new suite. So what happens when you’re planning to use that wafer size for a new technology node? You really don’t want to have to have two sets of production equipment, one for each side of the wafer-size shift. But it would also be rough to develop a new wafer size at the same time as developing a new technology node. That’s risk upon risk.

I talked with Ludo Deferm at Semicon West, where 450-mm was all the rage. But this excitement is clearly about things yet to come: there’s not much equipment available yet; only one item – KLA-Tencor’s blank wafer metrology unit – has been announced. And that just ensures that you’re starting with a good blank wafer. The rest is yet to come.

And imec sees 14 nm being the starting node for 450 mm. But the 450-mm R&D facility that imec just got government help for isn’t going to be started until 2014 – you can do the math on when it’s likely to be up and running. So if we had to wait for that before we could develop 14-nm technology, we’d be a long ways away.

As it is, imec is doing 14-nm development work on 300-mm wafers – it’s just that that equipment won’t be used for production. It’s just to get the process itself up. Clearly it will take some freshening up on the new 450-mm equipment when it’s ready. By that time, they’ll already be developing the 10-nm node.

As a curious side fact, he noted that a 200-mm cleanroom is actually more expensive to build than the 450-mm facility. That’s because, back then, the whole room had to be clean. Now everything is sealed in FOUPs, so, while it’s probably not a good idea to be tracking mud into the room or smoking, the level of cleanliness in the room is actually less than it used to be. Inside the equipment, however, there’s little forgiveness for the slightest intruder.

More on the Flemish investment can be found here

Leave a Reply

featured blogs
Nov 5, 2024
Learn about Works With Virtual, the premiere IoT developer event. Specifically for IoT developers, Silicon Labs will help you to accelerate IoT development. ...
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

SiC-Based High-Density Industrial Charger Solutions
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Prasad Paruchuri from onsemi explore the benefits of silicon carbide based high density industrial charging solutions. They investigate the topologies of Totem Pole PFC and Half Bridge LLC circuits, the challenges that bidirectional CLLC resonant DC-DC converters are solving today, and how you can take advantage of onsemi’s silicon carbide charging solutions for your next design.
May 21, 2024
37,605 views