industry news
Subscribe Now

MIPI Alliance Introduces Sensor Interface Specification for Mobile, Mobile-Influenced and Embedded-Systems Applications

PISCATAWAY, NJ and SCOTTSDALE, AZ, November 5, 2014 – MIPI®Alliance, an international organization that develops interface specifications for mobile and mobile-influenced industries, today introduced a sensor interface specification for mobile, mobile-influenced and embedded-systems applications. The new specification, named MIPI I3C? (or MIPI i3c?), was developed with the participation of vendors from across the sensor and mobile ecosystems. The name MIPI SenseWire? will be used to describe the application of I3C? in mobile devices and the use of the I3C interface for mobile devices connecting to a set of sensors, directly or indirectly.MIPI Alliance issued the announcement in conjunction with MEMS Executive Congress, which is taking place this week in Scottsdale, Arizona. The new specification, named MIPI I3C? (or MIPI i3c?), was developed with the participation of vendors from across the sensor and mobile ecosystems. The name MIPI SenseWire? will be used to describe the application of I3C? in mobile devices and the use of the I3C interface for mobile devices connecting to a set of sensors, directly or indirectly.

“The steadily increasing use of sensors in wireless devices is driving innovation of new and exciting applications for all types of products, yet incorporating numerous sensors in end-user devices is a serious pain point,” said Joel Huloux, chairman of the board of MIPI Alliance. “SenseWire brings a long-awaited, standardized solution to these difficult problems.”

The proliferation of sensors has created significant design challenges to product designers. The challenges are particularly demanding in the handset market, where smartphones often require as many as 10 sensors and more than 20 signals. Yet as these requirements continue to grow, phone architectures can’t scale to deliver the design, cost and performance efficiencies manufacturers need to add more sensors to their products. Further, integration requirements can vary for each sensor, and the digital interfaces available to the market, including I2C and SPI, are numerous. Interface fragmentation increases product development and integration costs. Also, currently available interfaces do not use power efficiently for communication with sensors, and this can limit their potential uses and scalability.

To address these challenges and ensure that the new specification addresses the needs of the broadest possible sensor ecosystem, MIPI Alliance collaborated with MEMS Industry Group (MIG) to survey both groups’ members to assess sensor interface needs and identify technology gaps that existing sensor standards can’t provide. The survey findings helped guide the work of the MIPI Alliance Sensor Working Group, which has led development of the new specification. Companies participating in the MIPI Alliance Sensor Working Group include AMD, Audience, Broadcom, Cadence, Intel Corporation, InvenSense, Lattice Semiconductor, MediaTek, Mentor Graphics, NVIDIA, NXP, STMicroelectronics, Synopsys, Qualcomm Incorporated, QuickLogic, VLSI Plus, Ltd., ZMDI, and others.

“The development of the MIPI I3C specification has been a truly communal development process, with stakeholders from across the industry participating collaboratively in this work,” said Ken Foust, chair of the MIPI Alliance Sensor Working Group. “We set out to develop an interface that is evolutionary, not revolutionary, and that advances I2C and SPI. This new specification will become a superset of both. We fully expect that the interface will have broad market adoption in the mobile ecosystem and beyond.”

In general, SenseWire incorporates and unifies key attributes of I2C and SPI while improving the capabilities and performance of each approach with a comprehensive, scalable interface and architecture. The specification also anticipates sensor interface architectures that mobile, mobile-influenced, and embedded-systems industries will need in the future. The specification should make it easier for system designers to connect and manage sensors in a device, improve time to market for these implementations and enable a greater number of sensors to operate in a device while minimizing power consumption and reducing component and implementation costs. It will also help manufacturers combine multiple sensors from different vendors to enable new features while supporting longer battery life.

The technical features of the MIPI I3C specification include a two-pin interface that is backward compatible with the I2C standard and provides data throughput capabilities comparable to SPI. The technical attributes explain the name for the specification, MIPI I3C, which is derived from its compatibility with I2C.

The new technology can facilitate in-band interrupts within the 2-wire interface, which drastically reduces device pin count and signal paths, and facilitates incorporation of more sensors in a device. On standard CMOS I/O, it supports a minimum data rate of 10 Mbps with options for higher performance high-data-rate (HDR) modes, offering a substantial leap in performance and power efficiency compared to existing options. It also offers multimaster support, dynamic addressing, command-code compatibility and a uniform approach for advanced power management features, such as sleep mode.

“MIG is deeply committed to advancing industry specifications that will ease development of MEMS/sensors-based applications. We were able to support that goal by collaborating with MIPI Alliance members in realizing this important new specification,” said Karen Lightman, executive director of MEMS Industry Group. “The MIPI I3C specification will have a lasting impact. It addresses the need for a standardized interface that ensures low-power operation in microcontrollers — across application, industry and market. Such broad applicability should produce direct benefits to wirelessly connected wearables, toy and gaming devices, healthcare products, and industrial equipment — applications that are the bedrock of the Internet of Things.”

The MIPI I3C specification is scheduled for Working Group completion by year-end 2014, with ratification and approval by the MIPI Alliance Board of Directors and publication in the first quarter of 2015. Companies that have not been involved in the development of the specification but want to participate still have time to join the process, gain early experience with the technology and play a role in the culmination of this work. For more information about the specification and the MIPI Alliance Sensor Working Group, please visit http://mipi.org/working-groups/sensor.

MIPI Alliance is a Supporting Sponsor of the MEMS Executive Congress, which is taking place Nov. 5-7, in Scottsdale, AZ. For information about the event, please visit http://us2014.memscongress.com/. MIPI Alliance is also participating as an Association Sponsor of the Wearable Sensors and Electronics Conference, which is taking place Nov. 12-13 in Santa Clara, Calif. For information about this event please visit http://wearablesensors2014.com/.

About MIPI Alliance

MIPI Alliance (MIPI) develops interface specifications for mobile and mobile-influenced industries. Founded in 2003, the organization has more than 275 member companies worldwide, more than 15 active working groups, and has delivered more than 45 specifications within the mobile ecosystem in the last decade. Members of the organization include handset manufacturers, device OEMs, software providers, semiconductor companies, application processor developers, IP providers, test and test equipment companies, as well as camera, tablet and laptop manufacturers. For more information, please visit www.mipi.org.


Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured chalk talk

SiC-Based High-Density Industrial Charger Solutions
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Prasad Paruchuri from onsemi explore the benefits of silicon carbide based high density industrial charging solutions. They investigate the topologies of Totem Pole PFC and Half Bridge LLC circuits, the challenges that bidirectional CLLC resonant DC-DC converters are solving today, and how you can take advantage of onsemi’s silicon carbide charging solutions for your next design.
May 21, 2024
37,625 views