editor's blog
Subscribe Now

450 In Belgium

Changing wafer size is a big deal. You can kiss all your old equipment good-bye and usher in a whole new suite. So what happens when you’re planning to use that wafer size for a new technology node? You really don’t want to have to have two sets of production equipment, one for each side of the wafer-size shift. But it would also be rough to develop a new wafer size at the same time as developing a new technology node. That’s risk upon risk.

I talked with Ludo Deferm at Semicon West, where 450-mm was all the rage. But this excitement is clearly about things yet to come: there’s not much equipment available yet; only one item – KLA-Tencor’s blank wafer metrology unit – has been announced. And that just ensures that you’re starting with a good blank wafer. The rest is yet to come.

And imec sees 14 nm being the starting node for 450 mm. But the 450-mm R&D facility that imec just got government help for isn’t going to be started until 2014 – you can do the math on when it’s likely to be up and running. So if we had to wait for that before we could develop 14-nm technology, we’d be a long ways away.

As it is, imec is doing 14-nm development work on 300-mm wafers – it’s just that that equipment won’t be used for production. It’s just to get the process itself up. Clearly it will take some freshening up on the new 450-mm equipment when it’s ready. By that time, they’ll already be developing the 10-nm node.

As a curious side fact, he noted that a 200-mm cleanroom is actually more expensive to build than the 450-mm facility. That’s because, back then, the whole room had to be clean. Now everything is sealed in FOUPs, so, while it’s probably not a good idea to be tracking mud into the room or smoking, the level of cleanliness in the room is actually less than it used to be. Inside the equipment, however, there’s little forgiveness for the slightest intruder.

More on the Flemish investment can be found here

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,119 views