editor's blog
Subscribe Now

Working Forward

You may recall that Vennsa’s OnPoint tool takes the results of verification and helps identify errors and possible causes. The tool’s early focus was on identifying suspect issues and letting you work from there.

Last year around DAC time, we noted that they took things a step further to suggest possible fixes (but you had to confirm whether they truly were fixes) and to do a better job of triage, clumping together things that might have a common cause.

But this is all reflected the backwards tracing that is typical of debug: find an issue and work back to possible causes. This is as opposed to forward debug, which, in its worst manifestation, consists of guessing at places to make changes and following the changes forward to see if they fix things. Couched in those terms, the forward approach sounds more like an act of desperation.

This year they have improved their “causality engine” to the point where you can start with proposed fixes and see the chain of logic from each proposed fix to the now-corrected problem point that demonstrates that the fix works. You can work forwards, except that now the specific locations of fixes and the values that fix them are provided by OnPoint rather than by a wish and a prayer.

It’s important to note that the “fixes” proposed aren’t circuit fixes; they’re just logic values (and times, in the case of state machines and such) that will remove the offending behavior. You still need to come up with a circuit change to implement the fix and then simulate it to ensure that you haven’t created a problem for yourself anywhere else.

One of the benefits of this is that the verification folks can now save the design folks lots of debug time. Before, a block might get handed back to a designers saying, “There’s a problem; here’s the test that failed.” Now that information can be accompanied by, “And here are a series of solutions from which you can choose.” Makes for much friendlier interactions.

You can find out more in their release.

 

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
61,728 views