editor's blog
Subscribe Now

Go Wide

Last week Cadence announced a new wide-I/O memory controller IP block, ostensibly the first of its kind. This actually represents a risk start based on a JEDEC standard that’s not yet complete.

The idea behind the wide-I/O movement is predicated on use in 3D ICs, where a memory chip will be stacked on a logic chip, with the connections being made by TSVs. Instead of requiring higher-drive I/Os that connect to chip pads and traverse PCB traces to get to a memory chip (or back from the memory chip), you stay entirely within the package. An array of TSVs mean that you can handle far more I/Os that if you have to go to package pins. And the drive requirements are reduced tremendously, reducing both the size (due to smaller transistors) and power of the resulting combination.

Of course, with more connections, you get much higher bandwidth: this is a 512-bit interface. That’s a lot more data available in one chunk than you can traditionally get.

Cadence’s controller block includes traffic shaping algorithms to increase throughput as well as features to address power, including traffic sensing (so that power can respond to traffic) and an option for dynamic voltage and frequency scaling (DVFS).

This would seem to come well ahead of the standard, which is projected (no promises!) to be available to non-members in September. But, in many such standardization cases, the technical details are approved first, and then the resulting standard goes through a higher-level board approval step that largely examines the process by which the standard was set to make sure that it was done properly. 

Clearly Cadence is betting that there will be no further technical changes. Or that, if there are, they can update the IP before any customer commits to final silicon.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Introducing QSPICE™ Analog & Mixed-Signal Simulator
Sponsored by Mouser Electronics and Qorvo
In this episode of Chalk Talk, Amelia Dalton and Mike Engelhardt from Qorvo investigate the benefits of QSPICE™ - Qorvo’s Analog & Mixed-Signal Simulator. They also explore how you can get started using this simulator, the supporting assets available for QSPICE, and why this free analog and mixed-signal simulator is a transformational tool for power designers.
Mar 5, 2024
7,277 views