industry news
Subscribe Now

Imec Demonstrates World’s First Vertically Stacked Gate-all-Around Si Nanowire CMOS Transistors

SAN FRANCISCO – International Electron Devices Meeting 2016 (IEDM) – Dec. 6, 2016 – At this week’s IEEE IEDM conference, world-leading research and innovation hub for nano-electronics and digital technology, imec, reported for the first time the CMOS integration of vertically stacked gate-all-around (GAA) silicon nanowire MOSFETs. Key in the integration scheme is a dual-work-function metal gate enabling matched threshold voltages for the n- and p-type devices. Also, the impact of the new architecture on intrinsic ESD performance was studied, and an ESD protection diode is proposed. These breakthrough results advance the development of GAA nanowire MOSFETs, which promise to succeed FinFETs in future technology nodes.

GAA nanowire transistors are promising candidates to succeed FinFETs in 7nm and beyond technology nodes. They offer optimal electrostatic control, thereby enabling ultimate CMOS device scaling. In a horizontal configuration, they are a natural extension of today’s mainstream FinFET technology. In this configuration, the drive current per footprint can be maximized by vertically stacking multiple horizontal nanowires. Earlier this year, imec scientists demonstrated GAA FETs based on vertically stacked 8nm diameter Si nanowires. These devices showed excellent electrostatic control, but were fabricated for n- and p-FETs separately.

Imec now reports on the CMOS integration of vertically stacked GAA Si nanowire MOSFETs, with matched threshold voltages for n- and p-type devices*. Key in the integration scheme is the implementation of dual-work-function metal gates to set the threshold voltages of the n- and p-FETs independently. In this process step, p-type work function metal (PWFM) is deposited in the gate trenches of all devices, followed by selectively etching the PWFM down to the HfO2 from the n-FETs and subsequent deposition of the n-type work function metal. The observation of matched threshold voltages (VT,SAT = 0.35V) for nMOS and pMOS devices validates the dual-work-function metal integration scheme.

The impact of this new device architecture on the intrinsic ESD performance was investigated as well**. Two different ESD protection diodes have been proposed, i.e. a gate-structure defined diode (gated diode) and a shallow-trench isolation defined diode (STI diode). The STI diode was the better ESD protection device, showing an excellent ratio of failure current (It2) over parasitic capacitance (C). Measurements and TCAD simulations also prove that the ESD performance in GAA nanowire based diodes is maintained in comparison to bulk FinFET diodes.

 “GAA nanowire transistors enable ultimate CMOS device scaling, with low degree of added complexity compared to alternative scaling scenarios,” stated Dan Mocuta, Director Logic Device and Integration at imec. The proposed integration scheme for Si GAA CMOS technology and the results on ESD protection are important achievements towards realizing these 7nm and beyond technology nodes. Future work will focus, among others, on further optimizing individual process steps, for example through the co-optimization of the junction and nanowire formation.”

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, Sony and TSMC.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Introduction to the i.MX 93 Applications Processor Family
Robust security, insured product longevity, and low power consumption are critical design considerations of edge computing applications. In this episode of Chalk Talk, Amelia Dalton chats with Srikanth Jagannathan from NXP about the benefits of the i.MX 93 application processor family from NXP can bring to your next edge computing application. They investigate the details of the edgelock secure enclave, the energy flex architecture and arm Cortex-A55 core of this solution, and how they can help you launch your next edge computing design.
Oct 23, 2023
25,218 views