industry news
Subscribe Now

AT&S, Soundchip, and STMicroelectronics Craft Innovative Bionic Ear

Leoben, Austria and Genève, Switzerland, 16 September 2014 – AT&S, a leader in advanced packaging solutions, Soundchip SA, a Swiss-based innovator in wearable sound technology, and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, today announced their collaboration in innovating a bionic hearing module that, when installed into a personal audio device, delivers an amazing wearable sound experience controlled at the ear by the wearer and software intelligence.

Personal audio devices, like an MP3 player or smartphone, equipped with the bionic hearing module, provide wearers with the ability to electronically “open” and “close” their ears to ambient sound conditions, or even to augment ambient sound with programmed audio from a connected smart device. This capability can fully protect wearers from noise in situations where the ambient sound is too loud, or to open the ear for natural conversation with others, without having to remove the audio device, suffer from the discomfort of occlusion, or worse, the pain of loud noise.

The bionic hearing module integrates a broad spectrum of advanced electronics to further enhance the on-the-go audio experience, including head-tracking and other sensing, to enable exciting new features, including augmented-audio guidance and biometric monitoring.

The multi-mode audio capabilities of the bionic hearing module are enabled through the use of HD-PA® technology developed by Soundchip. Their implementation in a compact form factor is made possible through the use of patented Soundstrate® technology, which enables the efficient combination of electronic, acoustic, and transmission means within a single, compact mechanical structure.

The semiconductor components in the bionic hearing module comprise the latest Motion and Audio MEMS (Micro-Electro-Mechanical System) components from STMicroelectronics, an HD-PA®-compliant Audio Engine for zero-latency sound processing, and an ultra-low-power STM32 MCU from ST’s industry-leading portfolio of more than 500 32-bit ARM® Cortex®-M-core microcontrollers.

The bionic hearing module’s packaging employs the latest in ECP® (Embedded Component Packaging) and 2.5D® PCB (Printed Circuit Board) technology from AT&S, which is capable of integrating acoustic, electroacoustic, passive and active electronic components with unmatched efficiency, providing module dimensions ideally suited to the comfort and size constraints of in-ear operation, and compatible with most existing in-ear-type personal audio devices.

“For the past four years, Soundchip has been leading the parade for smart wearable sound to market-leading companies in the consumer, mobile and aviation markets. We have been thrilled by their response and now see that consumers are ready to experience a new wave of smart, software-enabled wearable sound devices,” said Mark Donaldson, CEO of Soundchip.

“Enabling bionic hearing demands the interconnection of robust and reliable high-performance silicon components within a complex structure—that must be comfortable to wear. By combining our leading MEMS and micro-processing devices with complementary solutions from Soundchip and AT&S, we have the right combination of technology and know-how to deliver this ground-breaking solution,” said Andrea Onetti, Volume MEMS & Analog Division General Manager, STMicroelectronics.

“Very-small form-factor devices—especially those that will be worn in ear–demand highly integrated designs and packaging technologies at the leading edge. AT&S, as the foremost supplier of ECP® and 2.5D® packaging solutions, is strongly positioned to enable the bionic ear, and we are thrilled to be joining Soundchip and STMicroelectronics in bringing this exciting technology to market,” said Michael Tschandl,VP Sales Advanced Packaging, AT&S.

The bionic hearing module is expected to be available for customer sampling by the second quarter of 2015.

Leave a Reply

featured blogs
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

FleClear: TDK’s Transparent Conductive Ag Film
Sponsored by Mouser Electronics and TDK
In this episode of Chalk Talk, Amelia Dalton and Chris Burket from TDK investigate the what, where, and how of TDK’s transparent conductive Ag film called FleClear. They examine the benefits that FleClear brings to the table when it comes to transparency, surface resistance and haze. They also chat about how FleClear compares to other similar solutions on the market today and how you can utilize FleClear in your next design.
Feb 7, 2024
11,589 views