industry news
Subscribe Now

Crocus Introduces Breakthrough Magnetic-Logic-Unit™ (MLU) Technology

Crocus Technology, a leading developer of magnetic semiconductors, today announced its Magnetic-Logic-Unit (MLU) architecture, a scalable evolution of Crocus’ Thermally Assisted Switching™ (TAS) technology, that permits practical implementation of advanced logic and memory capabilities, a first for the industry. This innovation will expand the market for Crocus’ magnetic technology by opening up new applications in high density data storage, secure commerce and communications, high performance network processing and high temperature automotive and industrial uses.

Traditional magnetic memories are based on arrays of memory cells where each cell contains two magnetic layers in a stacked configuration. The first layer, often called the reference layer, is always magnetized in one direction. The second layer, called the storage layer, is either magnetized in the same direction as the reference layer to store a “1”, or the opposite direction to store a “0”. Crocus’ new MLU is based on its proven TAS technology to provide unprecedented stability to the stored data in normal operation. By leveraging this unique stability feature, the reference layer in the MLU architecture can be configured with fixed magnetization to implement a traditional NOR function, with floating magnetization to implement a NAND function, or with driven magnetization to implement an XOR function.

In high density memory applications, MLU opens the way to implementation of NAND configurations in magnetic memory, which was previously possible only in Flash memory technology. MLU NAND memory can be two to four times denser than conventional magnetic memory with the added benefit of full random access. Crocus’ MLU XOR, called Match-In-Place™, implements ultra-secure compare and encryption functions, making smart cards, identity cards, SIM cards, and near-field communications (NFC) devices tamper-proof. Match-In-Place also implements the search and compare functions required in network routing applications and high performance computing and can achieve up to fifty times the density of conventional CMOS hardware search processors. In addition, MLU in all its configurations is capable of normal operation at temperatures up to 200?C, making it ideal for use in automotive and industrial electronics.

“MLU has the potential to replace SRAM, DRAM, NAND, NOR and OTP in many stand alone and embedded memory products,” said Bertrand F. Cambou, executive chairman of Crocus Technology. “Because MLU’s NOR, NAND and XOR capabilities are built on a single wafer manufacturing process with different design architectures, they can be easily integrated into System- on-Chip (SOC) implementations.”

MLU is fully compatible with Crocus’ current wafer manufacturing process. Crocus will establish volume production of MLU based products in 130nm at its foundry partner Tower Jazz Semiconductor, as well as at its new Russian subsidiary Crocus Nano Electronics (CNE) for 90nm, 65nm, 45nm, and smaller lithography. Both will be based on magnetic technology developed in Crocus’ Grenoble facility in cooperation with its clean room partner Minatec.

About Crocus Technology 

Crocus is a leading developer of magnetic semiconductor technology for dense, non-volatile, high-speed, scalable chip solutions for general and special purpose applications. The company’s TAS innovation originated in the Grenoble-based Spintec laboratory, a world-leading R&D center in Spintronics, affiliated with French national laboratories CEA and CNRS. The company will offer discrete, high density memory chips that target a wide variety of telecommunication, networking, storage, computing and handheld applications. The company also licenses its technology for both standalone and embedded chip applications. Crocus’ technology is covered by a comprehensive patent portfolio. Find Crocus at: www.crocustechnology.com.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

High Voltage Stackable Dual Phase Constant On Time Controllers - Microchip and Mouser
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Chris Romano from Microchip and Amelia Dalton discuss the what, where, and how of Microchip’s high voltage stackable dual phase constant on time controllers. They investigate the stacking capabilities of the MIC2132 controller, how these controllers compare with other solutions on the market, and how you can take advantage of these solutions in your next design.
May 22, 2023
40,704 views