industry news
Subscribe Now

Intel, Micron Extend NAND Flash Technology Leadership, Introduce Industry’s Smallest, Most Advanced 20-Nanometer Process

SANTA CLARA, Calif. and BOISE, Idaho, April 14, 2011 – Intel Corporation and Micron Technology Inc. today introduced a new, finer 20-nanometer (nm) process technology for manufacturing NAND flash memory. The new 20nm process produces an 8-gigabyte (GB) multi-level cell (MLC) NAND flash device, providing a high-capacity, small form factor storage option for saving music, video, books and other data on smartphones, tablets and computing solutions such as solid-state drives (SSDs).

The growth in data storage combined with feature enhancements for tablets and smartphones is creating new demands for NAND flash technology, especially greater capacity in smaller designs. The new 20nm 8GB device measures just 118mm2 and enables a 30 to 40 percent reduction in board space (depending on package type) compared to the companies’ existing 25nm 8GB NAND device. A reduction in the flash storage layout provides greater system level efficiency as it enables tablet and smartphone manufacturers to use the extra space for end-product improvements such as a bigger battery, larger screen or adding another chip to handle new features.

Manufactured by IM Flash Technologies (IMFT), Intel and Micron’s NAND flash joint venture, the new 20nm 8GB device is a breakthrough in NAND process and technology design, further extending the companies’ lithography leadership. Shrinking NAND lithography to this technology node is the most cost-effective method for increasing fab output, as it provides approximately 50 percent more gigabyte capacity from these factories when compared to current technology. The new 20nm process maintains similar performance and endurance as the previous generation 25nm NAND technology.

“Close customer collaboration is one of Micron’s core values and through these efforts we are constantly uncovering compelling end-product design opportunities for NAND flash storage,” said Glen Hawk, vice president of Micron’s NAND Solutions Group. “Our innovation and growth opportunities continue with the 20nm NAND process, enabling Micron to deliver cost-effective, value-added solid-state storage solutions for our customers.”

“Our goal is to enable instant, affordable access to the world’s information,” said Tom Rampone, vice president and general manager, Intel Non-Volatile Memory Solutions Group. “Industry-leading NAND gives Intel the ability to provide the highest quality and most cost-effective solutions to our customers, generation after generation. The Intel-Micron joint venture is a model for the manufacturing industry as we continue to lead the industry in process technology and make quick transitions of our entire fab network to smaller and smaller lithographies.”

The 20nm, 8GB device is sampling now and expected to enter mass production in the second half of 2011. At that time, Intel and Micron also expect to unveil samples of a 16GB device, creating up to 128GBs of capacity in a single solid-state storage solution that is smaller than a U.S. postage stamp.

About Micron

Micron Technology, Inc., is one of the world’s leading providers of advanced semiconductor solutions. Through its worldwide operations, Micron manufactures and markets a full range of DRAM, NAND and NOR flash memory, as well as other innovative memory technologies, packaging solutions and semiconductor systems for use in leading-edge computing, consumer, networking, embedded and mobile products. Micron’s common stock is traded on the NASDAQ under the MU symbol. To learn more about Micron Technology Inc., visit www.micron.com.

About Intel

Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices. Additional information about Intel is available at newsroom.intel.com and blogs.intel.com.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Electrical Connectors for Hermetically Sealed Applications
Sponsored by Mouser Electronics and Bel
Many hermetic chambers today require electrical pathways to provide internal equipment with power, data or signals, or to receive data and signals from equipment within the chamber. In this episode of Chalk Talk, Amelia Dalton and Brad Taras from Cinch Connectivity Solutions explore the role that seals and connectors play in the performance of hermetic chambers. They examine the methodologies to determine hermetic seal leaks, the benefits of epoxy hermetic seals, and how Cinch Connectivity’s epoxy-based seals and hermetic connectors can add value to your next design.
Aug 22, 2023
30,164 views