fresh bytes
Subscribe Now

Researchers teaching robots how to best reject orders from humans

tufts-nao-robot-1447968574465.png

Gordon Briggs and Matthias Scheutz, from Tufts University’s Human-Robot Interaction Lab, are trying to figure out how to develop mechanisms for robots to reject orders that it receives from humans, as long as the robots have a good enough excuse for doing so.

In linguistic theory, there’s this idea that if someone asks you to do something, whether or not you really understand what they want in a context larger than the words themselves, depends on what are called “felicity conditions.” Felicity conditions reflect your understanding and capability of actually doing that thing, as opposed to just knowing what the words mean. For robots, the felicity conditions necessary for carrying out a task might look like this:

  1. Knowledge: Do I know how to do X?
  2. Capacity: Am I physically able to do X now? Am I normally physically able to do X?
  3. Goal priority and timing: Am I able to do X right now?
  4. Social role and obligation: Am I obligated based on my social role to do X?
  5. Normative permissibility: Does it violate any normative principle to do X?

via IEEE Spectrum

Continue reading

One thought on “Researchers teaching robots how to best reject orders from humans”

  1. Case 5 is going to fail in all cases, so that’s nice. “I am standing on the table, stylish_dismounts.lib failed to load, it can’t get much worse…what is the tipping use-case in this room?”

    Yeah, I can see they drilled on the bar crane safety drills, then went all through the No Mo’ Dykes book looking for the right use-cases.

Leave a Reply

featured blogs
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Medical Grade Power
Sponsored by Mouser Electronics and RECOM
In this episode of Chalk Talk, Amelia Dalton and Louis Bouche from RECOM explore the various design requirements for medical grade power supplies. They also examine the role that isolation and leakage current play in this arena and the solutions that RECOM offers in terms of medical grade power supplies.
Nov 9, 2023
22,452 views