editor's blog
Subscribe Now

Microsemi Moves GNSS Indoors

Much of the cellular build-out in areas that already have coverage is happening through small cells. It’s like we’ve gotten the broad brush strokes in place; now we’re fine-tuning coverage and capacity here and there as needed.

And much of this is happening in buildings – malls, office buildings, and other areas where large numbers of people concentrate.

Which creates a problem: these cells rely on accurate timing from GPS (or GNSS, generically). And, as we’ve seen in our discussions of indoor navigation, GPS isn’t a thing indoors. At least, not for your average receiver.

So what happens is, well, exactly what you’d expect: you put an antenna on the building to receive the GPS signal. That involves getting power up there and then distributing the received signal via coax.

That might not seem like much of a burden for those of you accustomed to setting up a TV satellite dish for your home. But, apparently, this is a bigger deal with big buildings. Running those bulky, shielded wires around isn’t trivial. And, apparently, the operator may even have to rent the space on the roof where the antenna goes. Oi, everyone with their hand out!

So Microsemi has come up with an alternative. They call it an integrated GNSS master – IGM. It will provide the master timing signal for the small cells installed in the building. It’s designed to be installed indoors.

“But there is no GPS signal indoors,” you might reasonably protest. Well, apparently there is – it’s just not a strong signal. (OK, I’m sure you can find places where the signal is pretty much gone. So… yeah, the Panic Room is probably not a good place to mount this. Although… read on…) How do they capture this signal?

First, they have a very sensitive receiver. They also take advantage of assisted GNSS (A-GNSS). That covers a broad range of alternative ways of receiving GNSS signals. Some are sent by Ethernet; some are pre-calculated and sent ahead of time; etc. Together, through what we might call “signal fusion” (by analogy with sensor fusion) with whatever live GPS signal it can detect, these allow the IGM to function indoors. It also improves the time-to-first-fix.

“But you still have to route power and signals,” you might continue to protest. Well, yes and no. There’s no clunky coax: it’s Ethernet. And the unit leverages Power over Ethernet (PoE). So once you’ve plugged the Ethernet cable in, you’re good to go. Much easier to wire; no conduit or high voltages to muck about with.

Microsemi_Integrated_GNSS_Master-IGM-Diagram_cr.jpg 

(Image courtesy Microsemi)

Thinking ahead, could this be leveraged for indoor navigation? That’s not Microsemi’s immediate plan, but they say that, in principle, it could.

You can read more in their announcement.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

SLM Silicon.da Introduction
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Guy Cortez from Synopsys investigate how Synopsys’ Silicon.da platform can increase engineering productivity and silicon efficiency while providing the tool scalability needed for today’s semiconductor designs. They also walk through the steps involved in a SLM workflow and examine how this open and extensible platform can help you avoid pitfalls in each step of your next IC design.
Dec 6, 2023
19,724 views