editor's blog
Subscribe Now

Managing Multicore Tasks

We’ve looked in the past at some of the APIs put together by the Multicore Association, notably the MCAPI communications API (and its update) and the MRAPI resource management API. In the same spirit, they are now taking up the issue of task management.

The whole idea with multicore software is that a program can be decomposed into multiple pieces that can be run concurrently. How you do that partitioning can be a hard problem, and is receiving some tools attention as the multicore design process gets some automation. You might think of these pieces as threads, but, in fact, threads are typically a specific implementation in SMP systems. Alternative parallel configurations can include multiple independent programs (rather than threads), each with its own OS, or even simple run-to-completion programs on “bare metal,” i.e., with no OS (and, hence, no threading services) at all.

So rather than getting bogged down in worrying about whether these “pieces” of the program are threads or programs or whatever, they can be generically referred to as tasks. And, while SMP OSes can handle the management and scheduling of threads, there’s no general task management solution for non-SMP systems – or, more critically, there’s no general approach that works for both SMP and AMP, homogeneous and heterogeneous systems.

Even where threading services exist, they can have far too much overhead for many embedded programs. Including the cost of creating and destroying threads, the overhead can completely wipe out any theoretical gains that the parallel version was supposed to provide. If your program exploits fine-grained parallelism, with hundreds or more small tasks, then the thread management can take longer than the actual execution of the thread itself.

In order to address this, the Multicore Association is taking up the creation of a task management API, called MTAPI, in order to provide a general approach for all architectures, and one whose implementation can be tailored to limited resources as needed. The process is just starting, and they’re soliciting input and participants.

More info can be found in their release

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

PIC® and AVR® Microcontrollers Enable Low-Power Applications
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Marc McComb from Microchip explore how Microchip’s PIC® and AVR® MCUs are a game changer when it comes to low power embedded designs. They investigate the benefits that the flexible signal routing, core independent peripherals, and Analog Peripheral Manager (APM) bring to modern embedded designs and how these microcontroller families can help you avoid a variety of pitfalls in your next design.
Jan 15, 2024
15,747 views