Texas Instruments Incorporated designs and manufactures analog technologies, digital signal processing (DSP) and microcontroller (MCU) semiconductors. TI is a leader in semiconductor solutions for analog and digital embedded and applications processing. A global semiconductor company, TI innovates through design, sales and manufacturing operations in more than 30 countries.
Chalk Talks Featuring Texas Instruments
Power Modules and Why You Should Use Them in Your Next Power Design
Sponsored by Mouser Electronics and Texas Instruments
In this episode of Chalk Talk, Amelia Dalton and Christine Chacko from Texas Instruments explore a variety of power module package technologies, examine the many ways that power modules can help save on total design solution cost, and the unique benefits that Texas Instruments power modules can bring to your next design.
High-Voltage Isolation for Robust and Reliable System Operation
Sponsored by Mouser Electronics and Texas Instruments
In this episode of Chalk Talk, Amelia Dalton and Luke Trowbridge from Texas Instruments examine the benefits of isolation in high voltage systems. They also explore the benefits of TI’s integrated transformer technology and how TI’s high voltage isolations can help you streamline your design process, reduce your bill of materials, and ensure reliable and robust system operation.
Solving Design Challenges Using TI's Code Free Sensorless BLDC Motor Drivers
Sponsored by Mouser Electronics and Texas Instruments
Designing systems with Brushless DC motors can present us with a variety of difficult design challenges including motor deceleration, reliable motor startup and hardware complexity. In this episode of Chalk Talk, Vishnu Balaraj from Texas Instruments and Amelia Dalton investigate two new solutions for BLDC motor design that are code free, sensorless and easy to use. They review the features of the MCF8316A and MCT8316A motor drivers and examine how each of these solutions can make your next BLDC design easier than ever before.
Designing with GaN? Ask the Right Questions about Reliability
Sponsored by Mouser Electronics and Texas Instruments
As demands for high-performance and low-cost power conversion increases, gallium nitride offers several intriguing benefits for next generation power supply design. In this episode of Chalk Talk, Amelia Dalton and Sandeep Bahl from Texas Instruments investigate the what, why and how of gallium nitride power technology. They take a closer look at the component level and in-system reliability for TI’s gallium nitride power solutions and why GaN might just be the perfect solution for your next power supply design.
Featured Content from Texas Instruments
featured video
TI isolation technology: Different by design
The need for isolation is growing, and while electromechanical relays, optocouplers and discrete transformers have been widely adopted for signal and power isolation, we're committed to pushing isolation technology further. See where we’re taking our capacitive and magnetic technologies next.
featured paper
How SHP in plastic packaging addresses 3 key space application design challenges
TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.
featured paper
3 key considerations for your next-generation HMI design
Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.
featured paper
Addressing high-voltage design challenges with reliable and affordable isolation tech
Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.
featured paper
An Engineer's Guide to Designing with Precision Amplifiers
Engineers face many challenges when designing analog circuits. This e-book covers common topics related to these products, including operational amplifier (op amp) specifications and printed circuit board layout issues, instrumentation amplifier linear operating regions, and electrical overstress.
featured paper
What is “real-time control” and why do you need it?
Real-time control is the ability of a closed-loop system to gather data, process that data and update the system within a defined time window. If the system misses that defined window, its stability, precision and efficiency will degrade. Diminished control can be detrimental to system performance; for example, not achieving the necessary speeds or even overheating. This article will explain the functional blocks of a real-time control system and provide an example of a robotics application.
featured paper
Integrating multiple functions within a housekeeping MSP430 microcontroller
Adding a small, low-cost microcontroller (MCU) for simple housekeeping functions can benefit many board designs. This housekeeping (or secondary) MCU is not the main host processor in the system, but it can handle several important system-level functions such as LED control or input/output (I/O) expansion. This article will explain how integrating a multifunction housekeeping MCU in your system can help lower bill-of-materials (BOM) costs, save board space, and best of all simplify your design.
featured paper
5 common Hall-effect sensor myths
Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.