industry news
Subscribe Now

Siemens and Mercedes-Benz Transform Future of Sustainable Factory Planning with Digital Energy Twin

  • Under a strategic partnership between Siemens and Mercedes-Benz AG, the companies have co-created a Digital Energy Twin to improve the integration of energy efficiency and sustainability measures in factory designs and upgrades
  • The Digital Energy Twin reduces early phase planning time significantly
  • Developed and tested in the Mercedes-Benz ‘Factory 56’ in Sindelfingen, Germany
  • Showcases the value of Siemens’ Xcelerator open ecosystem to create vertical and use-case specific products and solutions

Siemens and Mercedes-Benz have collaboratively developed a Digital Energy Twin to facilitate the future of sustainable factory planning in the automotive industry.

Designed to support the ambition to run all fully owned production sites of the automaker worldwide on 100 percent renewable energies by 2039, the innovative Digital Energy Twin enhances, simplifies and speeds the early phase factory energy planning process for both brownfield and greenfield sites, reducing planning time significantly.

The collaboration combines the decarbonization and energy twin domain know-how of Siemens with the deep automotive knowledge of our renowned partner, to create a scalable tool for the automotive environment. Siemens will provide training and support, maintain and continuously develop the Digital Energy Twin, as it is positioned for broad implementation across the Mercedes-Benz global production network.

Based on behavioral models of buildings, technical equipment and energy generation, the Digital Energy Twin which was designed and tested in Mercedes-Benz plant Sindelfingen, Germany, at the ‘Factory 56’, connects inputs such as weather data, load profile simulation, building asset selection and dimensioning. Simulating a physical energy system, it verifies proposed planning scenarios for energy usage, providing recommendations on how to optimize desired outcomes including energy efficiency and associated cost savings, as well as emission reduction.

“By accurately modelling operational and energy usage scenarios, the Digital Energy Twin enables faster and more transparent decision making in the early planning phases,” said Matthias Rebellius, Member of the Managing Board of Siemens AG and CEO of Smart Infrastructure. “This demonstrates how at Siemens we are combining the real and digital worlds to drive scalable, sustainable progress in industries, and represents an exciting first step towards an integrated process for optimized planning, building operation, and production.”

The co-created Digital Energy Twin demonstrates the potential of Siemens Xcelerator, an open digital business platform which accelerates digital transformation, enabling customers and partners to jointly develop tailored products and solutions for various industries.

Siemens and Mercedes Benz established a strategic partnership in 2021 for sustainable automotive production, enabling cooperation on advancing the digitalization of sustainable production methods.

“The Digital Energy Twin is our answer to successfully visualize, analyze and sustainably optimize energy-efficient building processes. Through this innovative approach, we benefit from a better understanding of existing factory buildings and transform them into living smart buildings. Thanks to this transformative technology, we are maximizing their potential and setting forward-looking standards for energy-efficient and sustainable building use in Mercedes-Benz’s global production network” said Arno van der Merwe, Vice President Production Planning Mercedes Benz Cars.

Digital energy twins are a key part of Siemens’ portfolio for supporting industrial customers in achieving their sustainability and decarbonization goals. Siemens recently announced that it was working with another strong international partner for its global Net Zero Production roadmap, using a digital energy twin to simulate energy use and identify where energy savings could be made at 15 breweries worldwide. Siemens estimates that energy savings of between 15-20 percent are achievable at each site, with an average CO2 reduction of 50 percent per site.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Premo-Flex
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Logan Lukasik from Molex and Amelia Dalton explore the benefits of Molex’s flat flexible cables and flexible printed circuits called Premo-Flex. They also investigate custom capabilities of the Premo-Flex solutions and how you can get started using Premo-Flex in your next design.
Dec 12, 2024
6,962 views