industry news
Subscribe Now

Remcom Announces Huygens Antennas to Integrate On-body Near-field and Far-field Electromagnetic Modeling in Dynamic Scenarios

Interoperability between XFdtd and Wireless InSite incorporates near-field antenna effects into simulations of antenna performance so that mobility, multipath, and interactions with body-worn devices may be analyzed in realistic environments.

Remcom announces the integration of XFdtd® 3D Electromagnetic Simulation Software with Wireless InSite® 3D Wireless Propagation Software through a new Huygens surface capability. The update also includes dynamic mobility, enabling the movement of RF systems, vehicles, and people through virtual wireless scenarios. These developments enable seamless interoperability between high-resolution near-field simulations and efficient 3D ray-tracing, supporting applications such as GNSS, 6G connectivity, lunar missions, and on-body communication while in motion.

With XFdtd’s full-wave simulation capabilities, RF engineers can capture steady-state electric and magnetic field data for complex designs involving MCAD, ECAD, PCB, scatterers, and circuit matching networks. Remcom’s unique Huygens surface capability maintains fidelity while incorporating these results into large-scale scenarios within indoor spaces, urban areas, or complex outdoor environments. Through this interface, near-field complex electromagnetic field data are transferred from XFdtd to Wireless InSite via a simplified workflow, using precise ray-tracing to calculate propagation and multipath in large indoor and outdoor scenes with mobile devices, people, and vehicles.

Wireless InSite calculates communication metrics such as propagation paths, S-parameters, received power, SINR, and data throughput while maintaining the correct relative positions of geometry and antenna field data in dynamic scenarios. The Huygens configuration can be placed anywhere in the scene and moved through time via mobility options that reveal how motion or moving objects and people affect fading and shadowing.

Key applications supported by the new integration include:

  1. GNSS Positioning: The solution enables accurate modeling of handheld devices on walking humans in urban environments, capturing multipath effects from 3D structures and signal losses from foliage, as observed from moving satellites.
  2. NASA Artemis Program: Remcom supports future lunar missions with wireless channel simulation and coverage analysis for lunar environments, including simulation of MIMO antennas on spacesuits during moonwalks, digital elevation maps (DEM), and analysis of network performance impacts due to regolith dust, sub-surface scattering, and blockage from rovers and craters.
  3. 5G/6G Connectivity for UAVs, Automotive, and Robotics: In AI-native 6G networks, performance will be driven by ML algorithms that require training data. These can be enabled through Wireless InSite’s mobility and EES metamaterials features combined with accurate simulation of propagation and multipath in complex indoor, outdoor, terrestrial, satellite, and non-terrestrial environments.
  4. On-Body Communications: XFdtd and Wireless InSite provide unique on-body communication modeling for wearables, including smartphones, earbuds (TWS), smartwatches, UWB positioning tags, 5G UE sidelink, and smart rings. This allows RF engineers to analyze interactions between the human and the device and optimize wireless performance across wearable ecosystems.

“Remcom’s Huygens technology merges the worlds of full-wave and ray-tracing to bring accurate near-field results to challenging electrically large environments,” said Tarun Chawla, director of business development at Remcom. “As wireless devices proliferate on complex scatterers like the human body or vehicles, accurately modeling effects like blockage, dielectric refraction, and antenna detuning is crucial. These requirements are driven by RF testing, including anechoic chamber and OTA channel sounding, which need correlation with RF digital twins. Remcom datasets are being used to digitize RF test and measurement using AI/ML models, capturing real-world wireless system user experience, from subcircuit to channel. We’re helping NASA achieve this for challenging Artemis missions by simplifying complex antenna analysis in dynamic scenarios. This integration between XFdtd and Wireless InSite is the first step toward a unified Remcom EM platform.”

About Remcom: For 30 years, Remcom has provided electromagnetic simulation and wireless propagation software for commercial users and U.S. government sponsors. Our innovative software tools, combined with exceptional support, have enabled the world’s most advanced engineering teams to deliver their devices to market by simplifying EM analysis for a wide variety of applications. Remcom is committed to its customers’ unique needs, offering flexible licensing options for installations of all sizes as well as custom-engineered solutions.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
61,728 views