industry news
Subscribe Now

MathWorks and NXP Unveil Model-Based Design Toolbox for Battery Management Systems

New Toolbox Streamlines Battery Management System Design, Testing, and Algorithm Deployment Workflows on NXP Processors

Natick, MA – (13 Nov 2024)

MathWorks, the leading developer of mathematical computing software, and NXP® Semiconductors, the worldwide leader in automotive processing, announced the availability of the Model-Based Design Toolbox (MBDT) for Battery Management Systems (BMS). The toolbox enables engineers to model, develop, and validate BMS applications in MATLAB® and Simulink®, automate C code generation from MATLAB for NXP Battery Cell controllers, and also support NXP’s software solution, the BMS SDK components.

BMS is crucial for EVs as it ensures the optimal performance, durability, and safety of the battery packs that power these advanced vehicles. The BMS design process increasingly relies on modeling and simulation to fine-tune algorithms tailored to EVs’ specific battery cell types and battery pack configuration. Model-Based Design enables the efficient design of the BMS algorithms, providing a means to test them in simulation for different scenarios, such as driving habits, environmental conditions, and fault occurrences. MBDT for BMS makes it easy for engineers to transition directly from Simulink models to running and testing their BMS algorithms on an NXP processor. This capability simplifies the BMS development process and accelerates the prototyping and testing phases.

“We’re excited to collaborate with MathWorks to support automotive engineers in developing the next generation of BMS solutions,” said Lars Reger, CTO at NXP Semiconductors. “Simplifying direct testing with MBDT on NXP processors offers a broad range of benefits, including faster design iterations that allow engineers to identify and fix issues upfront in the design process and reduce time to market.”

The MBDT for BMS solution bridges the gap between theoretical design and practical application. Engineers can directly implement their Simulink BMS models onto NXP processors without any manual coding, thereby preserving the integrity and efficiency of their original algorithms. In addition, the MBDT BMS product features integrated Input/Output (IO) connectivity. This functionality allows engineers to perform dynamic, real-world testing on their BMS systems, providing immediate feedback from early hardware prototypes and insights into system performance under various conditions. This level of testing is critical for ensuring the reliability and safety of BMS solutions in real-world scenarios.

“By enabling engineers to go directly from creating BMS algorithms in Simulink to running them on an NXP processor, we’re simplifying and accelerating the development process,” said Jim Tung, MathWorks Fellow. “The growth of the EV market demands more efficient, reliable, and safer battery systems, and tools like MBDT that streamline and enhance the engineering process will be critical. Reducing development times, facilitating easier testing, and accelerating market entry will be differentiators in this competitive market.”

For more information on NXP and MathWorks products, please visit mathworks.com/nxp.

About MathWorks

MathWorks is the leading developer of mathematical computing software. MATLAB, the language of engineers and scientists, is a programming environment for algorithm development, data analysis, visualization, and numeric computation. Simulink is a block diagram environment for simulation and Model-Based Design of multidomain and embedded engineering systems. Engineers and scientists worldwide rely on these products to accelerate the pace of discovery, innovation, and development in automotive, aerospace, communications, electronics, industrial automation, and other industries. MATLAB and Simulink are fundamental teaching and research tools in the world’s top universities and learning institutions. Founded in 1984, MathWorks employs more than 6,500 people in 34 offices around the world, with headquarters in Natick, Massachusetts, USA. For additional information, visit mathworks.com.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

High Voltage Intelligent Battery Shunt
Sponsored by Mouser Electronics and Vishay
In this episode of Chalk Talk, Scott Blackburn from Vishay and Amelia Dalton explore the what, where, and how of intelligent battery shunts. They also examine the key functions of battery management systems, the electrical characteristics of high voltage intelligent battery shunts and how you can get started using a high voltage intelligent battery shunt for your next design.
Dec 4, 2024
15,586 views