industry news
Subscribe Now

Bourns® TLVR Inductors Deliver Extremely High Current Capabilities to Match Today’s Data-Driven Application Performance Demands

Engineered with a dual-winding structure and low inductance, the Bourns® Model TLVR1005T and TLVR1105T Series provides fast transient response that can scale to CPU, FPGA and ASIC load requirements

RIVERSIDE, Calif., May 7, 2024 – Bourns, Inc., a leading manufacturer and supplier of electronic components for power, protection, and sensing solutions, today introduced its Model TLVR1005T and TLVR1105T Series. Bourns’ new multiphase trans-inductor voltage regulator (TLVR) inductors deliver extremely high current capabilities, low inductance, and low DC resistance (DCR) that are designed to meet today’s data-driven application performance needs. These types of applications have evolved in processing performance and now require the support of power bead inductors that can match their exceptionally high current specifications in the same, if not less, board space. Bourns® Model TLVR1005T and TLVR1105T Series multiphase TLVR inductors meet these requirements for servers, workstations, data centers, storage systems, and desktop computers, as well as in graphics cards and a variety of battery-powered systems.

A problem arises with traditional multiphase voltage regulators (VRs) in balancing performance, as high-current output demands require an increase in the duty cycle previously handled via long individual-phase stages. New multiphase TLVR architectures, developed to mitigate transient responses stemming from sudden increases in load output, are widely adopted to address these concerns. As such, system designers see the advantages of phase coupling in TLVR architectures, enabling extremely fast transient response, scalable with CPU, FPGA, and ASIC load requirements. The adoption of this architecture allows designers to develop robust systems without sacrificing other critical design parameters such as board space, system efficiency, power density, or BOM costs.

Engineered with a dual-winding structure and clip type coil, the Bourns® Model TLVR1005T and TLVR1105T Series deliver the low inductance and extremely high current capabilities (Irms up to 77 A and Isat up to 160 A) that are needed in a new generation of multiphase power solutions. The series’ shielded construction offers low radiation with an inductance range of 70 to 200 nH and an operating temperature range of -40 to +125 ºC.

The Bourns® Model TLVR1005T and TLVR1105T Series are available now and are RoHS* compliant and halogen free**. For more detailed product information, please see: www.bourns.com/products/magnetic-products/power-inductors-smd-dual-winding-shielded.

About Bourns
Bourns, Inc. is a leading manufacturer and supplier of position and speed sensors, circuit protection solutions, magnetic components, microelectronic modules, panel controls and resistive products. Headquartered in Riverside, California, USA, Bourns serves a broad range of markets, including automotive, industrial, consumer, communications, medical (low/medium risk)***, audio and various other market segments. Additional company and product information is available at www.bourns.com.

Leave a Reply

featured blogs
Dec 2, 2024
The Wi-SUN Smart City Living Lab Challenge names the winners with Farmer's Voice, a voice command app for agriculture use, taking first place. Read the blog....
Dec 3, 2024
I've just seen something that is totally droolworthy, which may explain why I'm currently drooling all over my keyboard....

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,474 views