industry news
Subscribe Now

Imec releases industry’s first 14nm process development kit

Leuven – March 6, 2012 – Imec today announces that it has released an early-version PDK (process development kit) for 14nm logic chips. This PDK is the industry’s first to address the 14nm technology node. It targets the introduction of a number of new key technologies, such as FinFET technology and EUV lithography. The PDK is made available to imec’s partners, and will be followed by incremental updates. Imec and its partners are developing a 14nm test chip to be released in the 2nd half of 2012 using this PDK.

With this PDK release, imec leads the way to an industry-standard 14nm PDK. In addition, the PDK anticipates the introduction of a number of new technologies at the 14nm node. The main example is the use of FinFET transistors, which have a larger drive per unit footprint and higher performance at low supply voltages compared to the traditional planar technologies. Evolutions of this PDK will gradually also introduce the use of high-mobility channel materials. The PDK includes elements of both immersion- and EUV lithography, opening the way for a gradual transition from 193nm immersion to EUV lithography.
This first 14nm PDK contains all elements for design assessment of the 14nm node through device compact models, parasitic extraction, design rules, parameterized cells (pcells), and basic logic cells. Starting from the PDK, imec and its partners are now designing a first test chip. This chip, planned for the 2nd half of 2012, will allow testing the device-, interconnect-, process- and litho assumptions, as well as performance and power of circuits implemented at the tight area budgets of the 14nm node.

The 14nm PDK was developed in the frame of imec’s INSITE program, and together with all the partners involved in this collaborative affiliation program. Through the INSITE program, imec offers its partners a very early insight in technologies. This way, companies can anticipate upcoming developments and start designing the more advanced systems and applications today, and get them on the market faster.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec’s revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.
Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited).

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

S32M2 Integrated Solutions for Motor Control
In this episode of Chalk Talk, Raghavan Nagarajan from NXP and Amelia Dalton explore the challenges associated with software defined vehicles, the benefits that S32M2 integrated solutions for motor control bring to this arena, and how you can get started using these solutions for your next automotive design.
Nov 21, 2024
1,097 views