industry news
Subscribe Now

First 28nm ARM Cortex-A9 Processor Optimization Pack now Available for GLOBALFOUNDRIES 28nm-SLP HKMG Process

Cambridge, UK – 23rd February 2012 – ARM today announced the availability of the ARM® Cortex™-A9 MPCore™ Processor Optimization Pack (POP) for GLOBALFOUNDRIES’ 28nm-SLP High-K Metal Gate process technology. Optimized for mobile, networking and enterprise applications, the energy-efficient ARM POP 28nm-SLP for Cortex-A9 processors delivers a performance range from 1GHz to 1.6GHz for worst case conditions, with up to 2GHz in typical conditions.  This provides a wide range of flexibility for System-on-Chip (SoC) designers to optimize performance and energy-efficiency using the ARM Artisan® Physical IP Platform and Cortex-A9 POP.

“As consumer demand for high-performance, energy-efficient mobile devices increases, GLOBALFOUNDRIES and ARM are lowering the risk for customers by delivering optimized Cortex-A9 cores on a proven 28nm SoC process,” said Kevin Meyer, Vice President of Design Enablement Strategy and Alliances, GLOBALFOUNDRIES. “This latest ARM physical IP solution for our 28nm-SLP process delivers industry-leading performance and energy-efficiency, while also decreasing time to market for customers’ latest mobile products.”

GLOBALFOUNDRIES’ 28nm Super Low Power (SLP) platform is designed for power-sensitive mobile and consumer applications, and is based on the company’s production-proven 32/28nm HKMG technology. ARM already supports the GLOBALFOUNDRIES 28nm-SLP process with a comprehensive Artisan Physical IP Platform. This includes process tuned 9 track and 12 track multi-Vt standard cell libraries, power management kits, ECO kits, ARM Artisan high-density and high-performance optimized memory compilers, as well GPIO through the ARM DesignStart™ online IP access portal. 

“Smartphones are increasingly becoming the devices that consumers rely on for a wide range of applications. To deliver the user experience that they would expect, OEMs and their semiconductor suppliers must deliver on the promise of high-performance and energy-efficiency,” commented John Heinlein, vice president of marketing, physical IP division, ARM. “Single and dual-core Cortex-A9 processor-based mobile devices are already widely available and delivering on this demand. The new 28nm POP provides an easy next step to maintain a competitive edge.”

ARM POPs include three critical elements necessary to achieve an optimized ARM core implementation.  First, it contains Artisan Physical IP logic libraries and memory instances that are specifically tuned for a given ARM core and process technology. This Physical IP is developed through a tightly coupled collaboration with ARM Processor Division engineers in an iterative process to identify the optimal results. Second, it includes a comprehensive benchmarking report to document the exact conditions and results ARM achieved for the core implementation.  Finally, it includes a POP Implementation Guide that details the methodology used to achieve the result, to enable the end customer to achieve the same implementation quickly and at low risk. 

For more information on ARM Artisan Physical IP Solutions go to: http://www.arm.com/products/physical-ip/index.php

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
61,728 views