industry news
Subscribe Now

ARM Cortex-A8, Cortex-A9 and Cortex-M4 OVP Fast Processor Models Provided by Imperas

OXFORD, United Kingdom, June 3, 2011 – Imperas, which is a member of the ARM Connected Community, has released its first models of the Cortex-A family of ARM processor cores. Models of the ARM Cortex-A series of cores, along with models of the Cortex-M series of cores, are now available from Open Virtual Platforms (OVP), including example virtual platforms incorporating the cores and support for the cores in Imperas’ advanced software development tools.

The OVP Fast Processor Models and example platforms are available from the Open Virtual Platforms website, www.OVPworld.org/ARM. The models of the ARM Cortex-A8, Cortex-A9 and Cortex-M4 processor cores, as well as models of the other ARM processors including the ARM7, ARM9, ARM10, ARM11 and Cortex-M3 families, work with the Imperas and OVP simulators, and have shown exceptionally fast simulation performance of hundreds of millions of instructions per second. The OVP Fast Processor Models include support for both the 32 and 16-bit instructions, as well as the MMU, MPU, TCM, VFP and NEON features.

“Software development, not just coding but debug, analysis and optimization, is the critical path for embedded systems based on the ARM Cortex-A8, Cortex-A9 and Cortex-M4,” said Simon Davidmann, president and CEO, Imperas and founding director of the OVP initiative. “The OVP Fast Processor Models accelerate the development cycle and make debug easier for software engineers. And the Imperas M*SDK tools provide additional capabilities needed for hardware-dependent software development on state of the art SoCs.”

All OVP processor models are instruction accurate, and very fast, focused on enabling embedded software developers, especially those building hardware-dependent software such as firmware and bare metal applications, to have a development environment available early to accelerate the software development cycle. OVP processor models employ a state of the art just-in-time code morphing engine to achieve the simulation speed. Virtual platforms utilizing these OVP processor models can be created with the OVP peripheral and platform models, or the processor models can be integrated into SystemC/TLM-2.0 based virtual platforms using the native TLM-2.0 interface available with all OVP models. The native TLM-2.0 interface enables multiple instantiations of the processor models in a single virtual platform, just as any other component would be instantiated. The OVP simulator can also be encapsulated within the Eclipse IDE, enabling easy use for software developers.

In addition to working with the OVP simulator OVPsim, the OVP Fast Processor Models work with the Imperas Multiprocessor/Multicore/Multithread Software Development Kit (M*SDK). These advanced tools for multicore software verification and analysis include key tools for software development on virtual platforms such as OS and CPU-aware tracing (instruction, function, task, event), hot spot profiling, code coverage and memory and cache analysis. The Verification, Analysis and Profiling (M*VAP) tools utilize the Imperas SlipStreamer patent pending binary interception technology. SlipStreamer enables these analytical tools to operate without any modification or instrumentation of the software source code, i.e., the tools are completely non-intrusive.

Imperas is making the new OVP Fast Processor Models of the ARM Cortex-A series, including the popular ARM Cortex-A8 and Cortex-A9 processor cores, and the ARM Cortex-M4, available now from the OVP website. Processor core models for the ARM Cortex-A9MP cores will be available within the next 10 weeks. OVP already offers ARM developers access to models of other ARM processors, including the Cortex-M3 and processors which utilize the v4, v5 and v6 ARM instruction sets. OVP also has reference virtual platforms incorporating the ARM cores, including bare metal platforms, a virtual platform of an Atmel AT91sam7 processor (based on an ARM7 core), and a virtual platform of the ARM IntegratorCP development board using the ARM926EJ-S or Cortex-A9. This IntegratorCP virtual platform enables users to boot Linux in under 10 seconds on a 2GHz laptop using OVPsim. These reference platforms are all available as source code, and are easily modified to add or change the memory and peripheral co! mponents to customize the platform as required for software development.

Available OVP Fast Processor Models of ARM cores

The following specific models are available as open source from OVP:
ARM7TDMI, ARM720T, ARM7EJ-S
ARM920T, ARM922T, ARM926EJ-S, ARM940T, ARM946E, ARM966E-S, ARM968E-S
ARM1020E, ARM1022E, ARM1026EJ-S
ARM1136J-S, ARM1156T2-S
Cortex-A8, Cortex-A9
Cortex-M3, Cortex-M4

About Imperas (www.Imperas.com)

For more information about Imperas, please go to the Imperas website.

About the Open Virtual Platforms Initiative (www.OVPworld.org)

For more information about OVP, please go to the About OVP page on the OVP website. Detailed quotations regarding OVP are available from www.ovpworld.org/newsblog/?p=42.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured chalk talk

Outgassing: The Hidden Danger in Harsh Environments
In this episode of Chalk Talk, Amelia Dalton and Scott Miller from Cinch Connectivity chat about the what, where, and how of outgassing in space applications. They explore a variety of issues that can be caused by outgassing in these applications and how you can mitigate outgassing in space applications with Cinch Connectivity interconnect solutions. 
May 7, 2024
39,316 views