fresh bytes
Subscribe Now

Robot ray swims using high-voltage artificial muscles

Screen_Shot_2017-04-16_at_11.51.11_PM.png

This robotic ray, developed at Zhejiang University in Hangzhou, China, is propelled by soft flapping wings made of dielectric elastomers, which bend when electricity is applied to them. Dielectric elastomers respond very quickly with relatively large motions, but they require very high voltages (on the order of 10 kilovolts) to get them to work. Traditionally, dielectric elastomers are covered in insulation, but for this aquatic application the researchers instead just submerged everything insulation free, relying on the water to act as both electrode and electric ground.
via IEEE Spectrum

Continue reading 

Leave a Reply

featured blogs
Apr 4, 2025
Gravitrams usually employ a chain or screw lift to hoist their balls from the bottom to the top, but why not use a robot?...

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,163 views