editor's blog archive
Subscribe Now

A Different Spin on Job Loss

In a discussion with Teledyne DALSA about their MIDIS MEMS process, we spent a few moments discussing how the ASIC die and the MEMS die are mated together. With this technology, the MEMS die has landing pads and the ASIC die gets micro-bumped and flipped and mated to the landing pads.

The question was whether this was done wafer-to-wafer or using known-good dice. The answer was wafer-to-wafer, since yield allows it and the costs are much lower. All pretty much reasonable reasoning.</ … Read More → "A Different Spin on Job Loss"

An Anti-Security Tool for Gray Hats

We all know that if we want to be able to… well… transgress someone else’s private computer and internet stuffs, there’s a subterranean culture with a dress code involving black hats where, for the right price, you can get all kinds of tools that will open up all kinds of unsavory possibilities. These are the guys our computer security systems are trying to protect us from. They’re the guys your mother warned you about.

If we keep them out of our computers, then we’re ok. Right?

< … Read More → "An Anti-Security Tool for Gray Hats"

A Navigation Demo

We’ve talked before about indoor and pedestrian navigation and the challenges they pose. As part of the ongoing industry effort to crack that nut, Movea recently announced a demonstration of their indoor navigation skills in France and South Korea. I was trying to parse their announcement carefully to catch the nuances of what they were claiming.

First of all, they claim that this is a “first,” but I think the key qualifier is that this is the first time … Read More → "A Navigation Demo"

A Software View of Hardware

One of the defining characteristics of an embedded system is that you should have no expectations about what it’s made of or how it’s arranged. There are no architecture standards, and that’s how everyone likes it.

Well, ok; not everyone: the poor dudes writing tools for embedded systems have a heck of a challenge dealing with all the variety. And, frankly, some of those tools come full circle and help architects decide how to optimize their systems. But if each variant takes a major project to configure the tools, then that& … Read More → "A Software View of Hardware"

A Different Kind of Current

We’ve seen a number of different ways in which magnetic interactions with electron current can be put to use thanks to the concept of spin. Those magnets are also conductors, so electrons are moving through materials having various (or no) magnetic polarization.

You might wonder why I went through the trouble to specify “electron” current. I mean, that’s what current is: a flow of electrons. Right? Well, it turns out there’s another more subtle current. … Read More → "A Different Kind of Current"

IMUs Feature Quartz

Epson has recently made a series of announcements in the IMU space, including a new V-series that they claim features the “world’s smallest IMU” (defined as “The smallest IMU among high-performance IMUs having gyro bias instability of 10 dph or less (as of the beginning of August 2013, according to Epson’s research)”). That would be 10x12x4 mm.

Why are they not comparing themselves to the silicon guys? Because their fundamental sense element material isn’t silicon; it’s quartz, branded as QMEMS.  At least for the gyroscope, which … Read More → "IMUs Feature Quartz"

Laying n-Type Epi

Dopants used to be there just for their doping. But stress is now an important aspect as well, which means the dopant atoms must be sized appropriately as compared to their silicon hosts. This has worked for p-type, where compressive stress is desired. Germanium, which is larger than silicon, compresses the silicon, increasing hole mobility.

n-type should be the reverse: tensile stress is needed, meaning smaller dopant atoms. Phosphorus and carbon are both smaller and can work. Sounds simple, right?

Well, apparently not so. The n-type dopants have a tendency to migrate, and so far … Read More → "Laying n-Type Epi"

Interconnect @ 7 nm

IC interconnect is supposed to do two things: provided a path for electrons with as little resistance as possible and ensure that different paths don’t interact with each other. The first is about metal, the second about the dielectric between metal lines.

Copper is a good, low-resistance metal, but you can’t simply put copper on silicon or it can diffuse in. So you have to put down a barrier layer first, some sort of metal that will block the copper from contacting the silicon directly. Then you need a seed layer to enable … Read More → "Interconnect @ 7 nm"

Are Diamonds the Coolest?

It’s not every day you get to hold a diamond whose size is on the order of inches (or cm, for those of you that require simpler math). But there it was, and when I touched it to ice, my fingers went cold in no time.

This surreal flirtation with a vaunted Girl’s Best Friend (thanks to what has to be one of the most successful marketing campaigns ever) came not as I lounged in the VIP room of some swanky event, baubles ablaze, but in the rather pedestrian setting that is the … Read More → "Are Diamonds the Coolest?"

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...