industry news
Subscribe Now

Power at Sea: Towards High-Performance Seawater Batteries

Scientists develop an efficient synthesis route to produce a novel co-doped anode material for rechargeable seawater batteries
Despite the many potential applications of seawater batteries (SWBs), the limited performance of available materials has hindered their commercialization. To tackle this issue, scientists from Korea Maritime and Ocean University have developed a novel co-doped carbon material for the anode of SWBs. Their straightforward synthesis route and the high performance of the developed anode material will pave the way for the widespread adoption of SWBs, which are safer and less expensive than lithium-ion batteries.
 
Lithium-ion batteries have taken the world by storm thanks to their remarkable properties. However, the scarcity and high cost of lithium has led researchers to look for alternative types of rechargeable batteries made using more abundant materials, such as sodium. One particularly promising type of sodium-based battery is seawater batteries (SWBs), which use seawater as the cathode.
Though SWBs are environmentally benign and naturally firesafe, the development of high-performance anode materials at a reasonable cost remains a major bottleneck that prevents commercialization. Traditional carbon-based materials are an attractive and cost-efficient option, but they have to be co-doped with multiple elements, such as nitrogen (N) and sulfur (S), to boost their performance up to par. Unfortunately, currently known synthesis routes for co-doping are complex, potentially dangerous, and don’t even yield acceptable doping levels.
In a recent study, a team of scientists from Korea Maritime and Ocean University led by Associate Professor Jun Kang have found a way out of this conundrum. Their paper, which was made available online on December 22, 2021 and published in Volume 189 of Carbon on April 15, 2022, describes a novel synthesis route to obtain N/S co-doped carbon for SWB anodes.
Termed ‘plasma in liquid,’ their procedure involves preparing a mixture of precursors containing carbon, N, and S and discharging plasma into the solution. The result is a material with high doping levels of N and S with a structural backbone of carbon black. As proved through various experiments, this material showed great potential for SWBs, as Dr. Kang remarks: “The co-doped anode material we prepared exhibited remarkable electrochemical performance in SWBs, with a cycling life of more than 1500 cycles at a current density of 10 A/g.
The potential maritime applications of SWBs are many, since they can be safely operated while completely submerged in seawater. They can be used to supply emergency power in coastal nuclear power plants, which is difficult when using conventional diesel generators in the event of a disastrous tsunami. Additionally, they can be installed on buoys to aid in navigation and fishing. Perhaps most importantly, SWBs could be literally life-saving, as Dr. Kang explains: “SWBs can be installed as a power source for salvage equipment on passenger ships. They would not only supply a higher energy density than conventional primary batteries, but also enable stable operation in water, thereby increasing survival probabilities.
Overall, this novel synthesis method for co-doped carbon anodes might just be the answer we need to make SWBs reach new heights!

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

AI/ML System Architecture Connectivity Solutions
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate a variety of crucial design considerations for AI and ML designs, the role that AI chipsets play in the development of these systems, and why the right connectivity solution can make all the difference when it comes to your machine learning or artificial intelligence design.
Oct 23, 2023
24,223 views