editor's blog
Subscribe Now

Zigbee/Thread Collaboration

Zigbee has a long history and is presumably familiar to our readers (at least at some level). It’s got the 802.15.4 physical layer, its own middle network/transport layers, and then profiles (in the Cluster Library) at the top application layer.

Those profiles define specific behaviors for a wide variety of devices; they define what I’ve referred to as “business object” semantics. Their value is in interoperability: you can share a messaging protocol, for instance, so that two endpoints can successfully exchange information, but if the format of the message content isn’t agreed on, the two devices ultimately can’t have a cogent conversation.

So these profiles define exactly how a door lock or a coffee maker or any other device should work so that, in theory anyway, stuff should just plug together and work. (Whether that works in real life is a different story, and not our focus for today.)

Meanwhile, the Thread protocol was announced not too long ago as an alternative middle layer that uses low-power IPv6. It uses the same physical layer that Zigbee uses. But it has no specific application layer defined. For believers in the value of pre-defined object semantics, this would mean that devices made by two different vendors using Thread are unlikely to work together – unless the two companies happened to talk first and agree on how things would work.

Well, it was recently announced that Zigbee and the Thread group are going to work together so that the Zigbee Cluster Library can be made to work over Thread. This gives Thread an application layer with object semantics, and it gives designers a choice of middle layer – Zigbee or Thread. And, given a network protocol translation function, it even means that Zigbee and Thread networks could even be intermixed.

GreenPeak, a Zigbee SoC provider, followed this up with a cautious statement in support of the collaboration, saying there was much work to do to test and prove out the resulting devices. They have a whitepaper with an overall protocol drawing that illustrates their view of their world, updated to include Thread.

 ZigBeeThreadApril2015.jpg

Image courtesy GreenPeak (Click to enlarge)

You can check out the official Zigbee/Thread announcement here.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

ADI Pressure Sensing Solutions Enable the Future of Industrial Intelligent Edge
The intelligent edge enables greater autonomy, sustainability, connectivity, and security for a variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Maurizio Gavardoni from Analog Devices explore how the intelligent edge is driving a transformation in industrial automation, the role that pressure sensing solutions play in IIoT designs and how Analog Devices is reshaping pressure sensor manufacturing with single flow calibration.
Aug 2, 2024
60,243 views