editor's blog
Subscribe Now

Touchscreen Response

My whimsical piece regarding an airplane touchscreen caught the eye of Touch International. They make touchscreens for airplanes and cars and other high-rel applications; they’ve been doing this for a long time. (I honestly don’t know if they made the screen I was whacking on.)

We met at the Interactive Technology Summit (erstwhile Touch Gesture Motion). It was interesting to contrast our discussion with some of the other things that I was hearing at the show. Touch Int’l makes all their own touchscreens, but they don’t lead the industry in R&D; to use CEO Michael Woolstrum’s phrase, they’re more about “applied science,” using established technologies in custom applications at moderate volumes.

And yet, while folks in the conference presentations talk about someday being able to do curved touchscreens, apparently Touch Int’l has been doing them since the 80s. To be clear, that’s “1D” curved, such as might come off of a roll. 2D curved, which you could fit over a spheroidal sort of shape, is coming, but isn’t here yet. For Touch Int’l or anyone else.

We also discussed the implications of touchscreens in some of the applications they address. Cars, for instance, presumably in an attempt to attract people with pseudo-whiz-bang cool-looking technology, have dropped all the easy-to-use knobs we (or our forebears) used to use intuitively. Instead, we’re faced with impenetrable GUIs that we must learn anew for each car, taking valuable time away from minor things like looking at the road.

I asked what the benefit of that really was (and, to be clear, this is pre-office-and-hometheater-in-the-car center stack), and apparently electronics are more reliable. I cocked my head a bit at that: phones used to be robust (you know, the old black Ma Bell ones that you could drop with impunity?) and they advertised that fact. Until they went more electronic. (I actually had a phone store salesman specifically say that the vaunted reliability no longer applied to new phones… this in the 80s.) And I owned a Mercedes at one point that seemed to need a lot of work. I talked to another Mercedes owner who crowed about the reliability. When I asked further, he clarified: the old ones were reliable; the newer ones with electronics were not. And I’ve never owned a car where the (now electronic) radio wasn’t the first thing to fail.

So hearing that electronic versions are more robust than the mechanical ones surprised me. I just assumed they were cheaper or looked cool or something… Mr. Woolstrum did agree that they can be confusing to use. In fact, he proposed a compromise that he thought optimal: putting mechanical controls over a touchscreen. That combines the ease-of-use and familiarity of knobs and such over a touchscreen that actually does the work. Interesting idea.

So next time I’m banging away at a touchscreen in a car or in a plane, I’ll have a name and a face to associate with it. And they’ll probably wonder whether that’s a good thing…

Leave a Reply

featured blogs
Jul 1, 2025
I don't know which of these videos is better: humans playing games with water pixels or robots playing games....

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

Maximize Power Efficiency in Embedded Applications with Agilex™ 5 E-Series FPGAs and SoCs Memory Solutions

Sponsored by Altera

Learn how Altera Agilex™ 5 FPGAs and SoCs deliver up to 1.9× lower system power than Zynq UltraScale+ without sacrificing performance. This white paper dives into real benchmark data, memory interface efficiency, and architectural advantages that make Agilex 5 the smart choice for embedded, vision, and AI edge applications. Optimize for power, performance, and design simplicity.

Click to read more

featured chalk talk

BD18333EUV 24-Channel Automotive LED Driver
In this episode of Chalk Talk, Catherine Scott from ROHM Semiconductor and Amelia Dalton explore automotive LED driver applications and how ROHM Semiconductor is driving innovation in this arena. They also investigate the animated lighting and limp home modes of ROHM’s BD18333EUV 24-Channel Automotive LED Driver and how you can use these solutions for your next automotive design.
Jun 19, 2025
21,063 views