editor's blog
Subscribe Now

Sorting Cells

Lens-free technology has poked its head up in a few places, but one of the more frequent views you may have of it is an application that Imec appears particularly fond of: a cell sorter.

The whole idea behind the contraption is to isolate abnormal blood cells from a sample. So they built a microfluidic device that delivers a flow of blood cells. Each cell passes over a lens-free aperture where a lens-free camera analyzes the interference patterns that the cell creates. That creates a differentiating signal between normal and abnormal cells.

The processing of that signature happens quickly enough that, at the point where the cell has traveled further to a microfluidic crossroads, normal cells can be steered down one channel; abnormal cells down another.

How do you “steer” a cell? Well, the default flow goes one way, and when a faulty cell is detected, at the time it hits the junction, a small heater creates an instantaneous bubble that pushes the cell into the other channel. (You could also actively steer the normal cells with a counter-bubble as well.)

In case that seems like a lot of work, well, it is. They say that they process 20 million images a second.

As I mentioned, they appear particularly proud of this, because it’s presented at numerous different venues, and they’ve invested in marvelous animation to illustrate what’s going on. So if you find yourself at an Imec function, you may also get to see the images. But, to be sure, it’s more than animation. When visiting their facility, this was one of the places they took us where they stood by like proud papas as we took a look at the real deals.

One of the challenges with building something like this is finding an adhesive that is compatible with being a microfluid channel, especially when there may be heaters and such in the device. Such an adhesive would be used to secure a glass cap.

Imec and JSR announced such a material last month. The adhesive can be patterned using normal photolithography, allowing this step to be performed on entire wafers. The picture below shows a cell sorter wafer with glass covers glued to the intact microfluidic dice, which contain those micro-heaters for steering the cells. With glass covers in place, the wafer can be diced up into individual cell sorters.

You can read more about this material in their announcement.JSR_wafer_red.png

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Optimize Performance: RF Solutions from PCB to Antenna
Sponsored by Mouser Electronics and Amphenol
RF is a ubiquitous design element found in a large variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Rahul Rajan from Amphenol RF discuss how you can optimize your RF performance through each step of the signal chain. They examine how you can utilize Amphenol’s RF wide range of connectors including solutions for PCBs, board to board RF connectivity, board to panel and more!
May 25, 2023
37,570 views