editor's blog
Subscribe Now

Simulating the Whole Process

Back when discussion CMOS-compatible MEMS, I briefly mentioned a couple tools from Coventor that are used in MEMS design. But one of them actually has use for any semiconductor process. You might think it’s another TCAD tool, but actually, it isn’t.

TCAD tools work with low-level physics to model small portions of an overall process. It’s like using SPICE to simulate a cell – very detailed, but can’t be used on an entire circuit. Likewise, you typically wouldn’t run a TCAD tool across an entire process from start to finish.

That’s what Coventor’s SEMulator3D does. It’s abstracted up one layer, and can be used to animate – literally – the entire process of building a transistor or other device. They do this using “voxels” – the 3D equivalent of a pixel. The sides of a voxel are sized so that there are 2-4 of them within the minimum feature size. The properties of each voxel include materials information, and there can be mixes and gradients so that there’s no pretense of a particular volume consisting of only one material.

Throughout the steps of the process, voxels are added (e.g., deposition), modified (e.g., implant), or deleted (e.g., etch). Some chemical interactions can be modeled (for example, if you ended up etching something you hadn’t intended); some can’t (for example, if copper is on bare silicon, resulting in electromigration). All of the effects are correlated with actual silicon.

The process description input to the tool is separate from the layout of a given circuit, so you can develop a “regression suite” of layouts. When you want to consider a process change, you can then apply it across the suite to see if it causes any problems in any of them. It can support layouts containing even thousands of transistors.

Their recent news is that they’ve now released a 64-bit version. This allows bigger areas to be simulated, or the use of smaller voxels – important as dimensions continue to shrink.

You can find more in their release

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

ROHM’s 3rd Gen 650V IGBT for a Wide range of Applications: RGW and RGWS Series
In this episode of Chalk Talk, Amelia Dalton and Heath Ogurisu from ROHM Semiconductor investigate the benefits of ROHM Semiconductor’s RGW and RGWS Series of IGBTs. They explore how the soft switching of these hybrid IGBTs contribute to energy savings and power generation efficiency and why these IGBTs provide a well-balanced solution for switching and cost.
Jun 5, 2024
33,780 views