editor's blog
Subscribe Now

Sensor Fusion Sea Change

As I have observed and listened to the things that folks in the sensor fusion business (whether purveyors of sensors or sensor-agnostic) have been saying, there’s something of a change in the air, and it was reinforced at CES. The focus of fusion is shifting.

At the very bottom of the fusion stack are complex mathematical relationships that turn, for example, individual sensor readings into higher-level orientation information. Clearly, there’s been a period where getting that right and getting it all to be computed in real time was an effort. But that time appears to be over. Things are moving up in abstraction, but there’s a big qualitative change that’s coming with that.

The math, however, complex, more or less provides a “right answer” that’s not subject to judgment. All sensor fusion implementations would presumably agree on the answer.

The bigger effort now is not on getting the math right. Now the issue is: which sensor should I listen to? For example, if the mag sensor shows movement but the accelerometer hasn’t budged, should the mag data be ignored? Or, more perniciously, if a gyro indicates movement but the mag doesn’t, then ignore the gyro… but if the mag indicates movement and the gyro doesn’t then ignore the mag?

As will be evident in various stories I’ll elaborate on over the next little while, the challenge these days seems to be on comparing various inputs and then deciding whom to believe. And this feeds into a higher-level concept that I heard mentioned numerous times at CES: context.

Context has implications far beyond simple questions of, for instance, orientation. But judging which sensors to acknowledge and which to ignore is really a primitive context exercise.

And here’s where it’s qualitatively different from what’s come before: There is no right answer. Well, I mean, I guess there is a right answer (or, perhaps stated more accurately, any of us that have had our devices try to be too clever and guess what we’re doing, there are many wrong answers). But this is not a math problem: It’s a heuristic problem. Which means that ten different fusions algorithms may approach the problem ten different ways.

This is actually good for competition in that there can be true differentiation. It also means that several completely different approaches may all work well, which suppresses that differentiation.

The bottom line to me is that it all feels slightly more messy and complex than the complex math. Structuring an algorithm replete with heuristics can be tough – if you want to make it flexible enough to accommodate frequent changes and refinements to the algorithm. Over time, I wouldn’t be surprised to see this be a strong contributing factor in determining who wins and who loses in the long term.

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'Ā¦...

featured video

Introducing FPGAi ā€“ Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Alteraā€™s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Dependable Power Distribution: Supporting Fail Operational and Highly Available Systems
Sponsored by Infineon
Megatrends in automotive designs have heavily influenced the requirements needed for vehicle architectures and power distribution systems. In this episode of Chalk Talk, Amelia Dalton and Robert Pizuti from Infineon investigate the trends and new use cases required for dependable power systems and how Infineon is advancing innovation in automotive designs with their EiceDRIVER and PROFET devices.
Dec 7, 2023
59,172 views