editor's blog
Subscribe Now

Sensor Fusion Sea Change

As I have observed and listened to the things that folks in the sensor fusion business (whether purveyors of sensors or sensor-agnostic) have been saying, there’s something of a change in the air, and it was reinforced at CES. The focus of fusion is shifting.

At the very bottom of the fusion stack are complex mathematical relationships that turn, for example, individual sensor readings into higher-level orientation information. Clearly, there’s been a period where getting that right and getting it all to be computed in real time was an effort. But that time appears to be over. Things are moving up in abstraction, but there’s a big qualitative change that’s coming with that.

The math, however, complex, more or less provides a “right answer” that’s not subject to judgment. All sensor fusion implementations would presumably agree on the answer.

The bigger effort now is not on getting the math right. Now the issue is: which sensor should I listen to? For example, if the mag sensor shows movement but the accelerometer hasn’t budged, should the mag data be ignored? Or, more perniciously, if a gyro indicates movement but the mag doesn’t, then ignore the gyro… but if the mag indicates movement and the gyro doesn’t then ignore the mag?

As will be evident in various stories I’ll elaborate on over the next little while, the challenge these days seems to be on comparing various inputs and then deciding whom to believe. And this feeds into a higher-level concept that I heard mentioned numerous times at CES: context.

Context has implications far beyond simple questions of, for instance, orientation. But judging which sensors to acknowledge and which to ignore is really a primitive context exercise.

And here’s where it’s qualitatively different from what’s come before: There is no right answer. Well, I mean, I guess there is a right answer (or, perhaps stated more accurately, any of us that have had our devices try to be too clever and guess what we’re doing, there are many wrong answers). But this is not a math problem: It’s a heuristic problem. Which means that ten different fusions algorithms may approach the problem ten different ways.

This is actually good for competition in that there can be true differentiation. It also means that several completely different approaches may all work well, which suppresses that differentiation.

The bottom line to me is that it all feels slightly more messy and complex than the complex math. Structuring an algorithm replete with heuristics can be tough – if you want to make it flexible enough to accommodate frequent changes and refinements to the algorithm. Over time, I wouldn’t be surprised to see this be a strong contributing factor in determining who wins and who loses in the long term.

Leave a Reply

featured blogs
Jul 1, 2025
I don't know which of these videos is better: humans playing games with water pixels or robots playing games....

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

Agilex™ 3 vs. Certus-N2 Devices: Head-to-Head Benchmarking on 10 OpenCores Designs

Sponsored by Altera

Explore how Agilex™ 3 FPGAs deliver up to 2.4× higher performance and 30% lower power than comparable low-cost FPGAs in embedded applications. This white paper benchmarks real workloads, highlights key architectural advantages, and shows how Agilex 3 enables efficient AI, vision, and control systems with headroom to scale.

Click to read more

featured chalk talk

Versatile S32G3 Processors for Automotive and Beyond
In this episode of Chalk Talk, Amelia Dalton and Brian Carlson from NXP investigate NXP’s S32G3 vehicle network processors that combine ASIL D safety, hardware security, high-performance real-time and application processing and network acceleration. They explore how these processors support many vehicle needs simultaneously, the specific benefits they bring to autonomous drive and ADAS applications, and how you can get started developing with these processors today.
Jul 24, 2024
92,018 views