editor's blog
Subscribe Now

Sensor Fusion Sea Change

As I have observed and listened to the things that folks in the sensor fusion business (whether purveyors of sensors or sensor-agnostic) have been saying, there’s something of a change in the air, and it was reinforced at CES. The focus of fusion is shifting.

At the very bottom of the fusion stack are complex mathematical relationships that turn, for example, individual sensor readings into higher-level orientation information. Clearly, there’s been a period where getting that right and getting it all to be computed in real time was an effort. But that time appears to be over. Things are moving up in abstraction, but there’s a big qualitative change that’s coming with that.

The math, however, complex, more or less provides a “right answer” that’s not subject to judgment. All sensor fusion implementations would presumably agree on the answer.

The bigger effort now is not on getting the math right. Now the issue is: which sensor should I listen to? For example, if the mag sensor shows movement but the accelerometer hasn’t budged, should the mag data be ignored? Or, more perniciously, if a gyro indicates movement but the mag doesn’t, then ignore the gyro… but if the mag indicates movement and the gyro doesn’t then ignore the mag?

As will be evident in various stories I’ll elaborate on over the next little while, the challenge these days seems to be on comparing various inputs and then deciding whom to believe. And this feeds into a higher-level concept that I heard mentioned numerous times at CES: context.

Context has implications far beyond simple questions of, for instance, orientation. But judging which sensors to acknowledge and which to ignore is really a primitive context exercise.

And here’s where it’s qualitatively different from what’s come before: There is no right answer. Well, I mean, I guess there is a right answer (or, perhaps stated more accurately, any of us that have had our devices try to be too clever and guess what we’re doing, there are many wrong answers). But this is not a math problem: It’s a heuristic problem. Which means that ten different fusions algorithms may approach the problem ten different ways.

This is actually good for competition in that there can be true differentiation. It also means that several completely different approaches may all work well, which suppresses that differentiation.

The bottom line to me is that it all feels slightly more messy and complex than the complex math. Structuring an algorithm replete with heuristics can be tough – if you want to make it flexible enough to accommodate frequent changes and refinements to the algorithm. Over time, I wouldn’t be surprised to see this be a strong contributing factor in determining who wins and who loses in the long term.

Leave a Reply

featured blogs
Apr 4, 2025
Gravitrams usually employ a chain or screw lift to hoist their balls from the bottom to the top, but why not use a robot?...

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

Machine Learning on the Edge
Sponsored by Mouser Electronics and Infineon
Edge machine learning is a great way to allow embedded devices to run applications that can collect sensor data and locally process that data. In this episode of Chalk Talk, Amelia Dalton and Clark Jarvis from Infineon explore how the IMAGIMOB Studio, ModusToolbox™ Software, and PSoC and AURIX™ microcontrollers can help you develop a custom machine learning on the edge application from scratch. They also investigate how the IMAGIMOB Studio can help you easily develop and deploy AI/ML models and the benefits that the PSoC™ 6 Artificial Intelligence Evaluation Kit will bring to your next machine learning on the edge application design process.
Aug 12, 2024
56,314 views