editor's blog
Subscribe Now

Sensing the Squish

We’re used to touch being about locating one or more fingers or items on a surface. This is inherently a 2D process. Although much more richness is being explored for the long-term, one third dimension that seems closer in is pressure: how hard are we pushing down, and can we use that to, for instance, grab an object for dragging?

At the 2011 Touch Gesture Motion conference, one company that got a fair bit of attention was Flatfrog, who uses a light-based approach, with LEDs and sensors around the screen to triangulate positions. At the 2012 Touch Gesture Motion conference, when 2D seemed so 2011, pressure was a more frequent topic of conversation. But clearly a visual technology like Flatfrog’s wouldn’t be amenable to measuring pressure since there is nothing to sense the pressure.

Unless…

If you have a squishy object like a finger, then you can use what I’ll call the squish factor to infer pressure. This is what Flatfrog does: when a finger (for example) touches down, they normalize the width of the item, and then they track as that width widens due to the squishing of the finger (or whatever). Which means that this works with materials that squish. Metal? Not so much.

You might wonder how they can resolve such small movements using an array of LEDs that are millimeters apart. For a single LED and an array of sensors, for example, the resolution might indeed be insufficient. But because they have so many LEDs, the combined measurements from all of them allow them to resolve small micro-structures.

There is a cost to this, of course, in processing: it adds about 100 million instructions per second to the processing. “Ouch!” you say? Actually, it’s not that bad: their basic processing budget without pressure is about 2 billion instructions per second, so this is about a 5% adder.

More information at their website

Leave a Reply

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,469 views