editor's blog
Subscribe Now

New Sensor Parameter Standard

Early this year we took a look at MEMS standards (or the need therefor), and one of the active efforts involved unifying sensor parameters and data sheets so that users could compare and combine different sensors from different companies – a challenging task at present.

Well, that effort has now yielded some results. The “Sensor Performance Parameter Definitions” document has been released under the auspices of the MEMS Industry Group (MIG). The effort itself was led by Intel and Qualcomm, with input from a number of different sensor players.

While many such standards documents start with a limited scope and just can’t stop, a quick look at the table of contents suggests that hasn’t happened here. The bulk of the document is simply a set of definitions for parameters for different sensors. It is augmented by helpful lists of terms and acronyms, symbols and equations, and measurement conversions.

The sensors covered by the document are:

  • Accelerometers
  • Magnetometers
  • Gyroscopes
  • Pressure Sensors
  • Humidity Sensors
  • Temperature Sensors
  • Ambient Light Sensors
  • Proximity Sensors

This seems to cover all of the Windows HID-required sensors (since inclinometers and orientation sensors are typically fused versions of the above) except for GPS.

Each sensor type has its own parameters. For example, the following parameters are defined for accelerometers:

  • Full Scale Range
  • Digital Bit Depth
  • Zero-g Offset
  • Zero-g Offset Temperature Coefficient
  • Sensitivity
  • Sensitivity Temperature Coefficient
  • Noise
  • Current Consumption
  • Output Data Rate (ODR)
  • Filter -3dB Cutoff
  • Internal Oscillator Tolerance
  • Cross-Axis Sensitivity
  • Integral Non-Linearity
  • Transition Time
  • Data Ready Delay

For each parameter, the following information is provided:

  • Any aliases or other names for the parameter
  • A definition
  •  Conditions under which the parameter is specified (typically more than one)
  • Distribution (e.g., minimum/typical/maximum)

Various timing diagrams and other graphs are used to illustrate the parameters.

And that’s pretty much all there is to it.  A modest 60 pages (with lots of whitespace, easy to read). As promised, no more, no less.

You can find more on the announcement in their release; the document is available for download on the MIG website (you’ll need to provide your info).

Leave a Reply

featured blogs
Jul 1, 2025
I don't know which of these videos is better: humans playing games with water pixels or robots playing games....

Libby's Lab

Libby's Lab - Scopes out Littelfuse C&K Aerospace AeroSplice Connectors

Sponsored by Mouser Electronics and Littelfuse

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Littelfuse C&K Aerospace Aerosplice Connectors, available at Mouser.com! These connectors are ideal for high-reliability easy-to-use wire-to-wire connections in aerospace applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

Agilex™ 3 vs. Certus-N2 Devices: Head-to-Head Benchmarking on 10 OpenCores Designs

Sponsored by Altera

Explore how Agilex™ 3 FPGAs deliver up to 2.4× higher performance and 30% lower power than comparable low-cost FPGAs in embedded applications. This white paper benchmarks real workloads, highlights key architectural advantages, and shows how Agilex 3 enables efficient AI, vision, and control systems with headroom to scale.

Click to read more

featured chalk talk

Industrial Internet of Things
Sponsored by Mouser Electronics and CUI Inc.
In this episode of Chalk Talk, Amelia Dalton and Bruce Rose from CUI Inc explore power supply design concerns associated with IIoT applications. They investigate the roles that thermal conduction and convection play in these power supplies and the benefits that CUI Inc. power supplies bring to these kinds of designs.
Aug 16, 2024
50,961 views