editor's blog
Subscribe Now

IoT Via WiFi

We recently looked at levels of data communication in the Internet of Things (IoT) and established three levels:

–          Formal communications protocol level (e.g., TCP/IP)

–          Generic data level (e.g., Xively)

–          Business objects

At the recent Internet of Things Engineering Summit, I talked with another company that illustrates some of how this works. They’re called Econais. (I keep seeing this as looking French, and I want to pronounce it “eh-koh-NAY” – but that’s wrong: it’s a Greek company, and it’s pronounced “ee-KOH-ness”).

Econais recently announced a new module for connecting Things to WiFi. And the focus is on making integration easy: with 20 lines of code, you can connect to a local WiFi network. Assuming your Thing doesn’t have a screen (and, like a motion detector, might even be mounted someplace inconvenient), your phone acts as the keyboard, launching Thing code that gets connection information from the access point. This is part of their ProbMe (“probe me” – named after its pinging capability) in-situ management system.

Because Econais implements standards like WiFi and TCP, with no further abstraction, it occupies the comms protocol level (i.e., the first of the three above). But they also partner with Xively, who lays over the protocol level. In fact, for a programmer, both APIs are then available: you can write at the detailed Econais level or at the more abstracted Xively level.

Drawing.png

The overall idea here is that you can get onto the network easily with Econais, but you can then manipulate data more easily at the Xively (or whoever lies above this) level. Of course, the WiFi only goes as far as the access point; to get to the cloud, you then transition to the various other wired (or even wireless) comms protocols that make up the Internet.

Econais actually has two families of WiFi module, the 19D01, which doesn’t have an MCU in it (so presumably you attach it to your Thing that already has an MCU) and the recently-announced 19W01, which includes an MCU as well as integrated FLASH and an antenna. It’s all a bit confusing since, at the time of this writing, these distinctions aren’t clear on the website or some of the graphics. But size is an important selling factor for them: the MCU-less version is an 8-mm square module; the W01 is 14 mm x 12 mm.

And, just as I was preparing to post this, notice came in of a new Lantronix WiFi module for Arduino boards. So it slides into the same category. It is larger, at 24 mm x 16.5 mm.

For more info on Econais’s new W01 board, check out their announcement; for Lantronix, you can find their announcement here.

 

Update (5/14/14): I have some more clarification on the Econais integration story.

  • There’s an EC32L module that has an MCU separate from the WiFi chip.
  • The EC19W products integrate the MCU in with the WiFi chip, although the MCU is still available for developer programs. Some of the other hardware interfaces (A/D, GPIO, etc.) are reduced vs. the EC32L.
  • Both of these include FLASH and an antenna, so they’re certified by the various international organizations.
  • The EC19D excludes the FLASH and antenna. It’s therefore not certified (but presumably a system including it would need to be).

Leave a Reply

featured blogs
Apr 16, 2024
In today's semiconductor era, every minute, you always look for the opportunity to enhance your skills and learning growth and want to keep up to date with the technology. This could mean you would also like to get hold of the small concepts behind the complex chip desig...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Trends and Solutions for Next Generation Energy Storage Systems
Sponsored by Mouser Electronics and onsemi
Increased installations of DC ultra fast chargers, the rise of distributed grid systems, and a wider adoption of residential solar installations are making robust energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton, Hunter Freberg and Prasad Paruchuri from onsemi examine trends in EV chargers, solar, and energy storage systems, the role that battery storage integration plays in energy storage systems, and how onsemi is promoting innovation in the world of energy storage systems.
Jan 29, 2024
11,161 views