editor's blog
Subscribe Now

IoT Update: I Give Up

Last year I proposed an overall architecture for the Internet of Things (IoT). The goal was to clarify the many different pieces required to make this work. And, in particular, to clarify which companies do which parts of the IoT.

There are so many companies that say the “enable the IoT.” But what does that mean? Last year, it could have meant many things, and so I tried to make some sense out of it. My intent was to come back and revise and refresh that effort.

That’s what I started to do recently – until throwing my hands up in dismay. There are so many companies claiming to participate in this business, and there’s typically not enough information available to place them properly in the various categories I set up. I have updated the table below, but only to the point where I surrendered.

You could argue that, as a journalist, I should be digging into each and every one of these companies to ferret out the truth. Up to a point, I agree; that’s what I did before. But after a while, I realized that I was turning into an industry analyst.

In reality, it would keep me from doing anything else for a while. Truly fleshing things out now would be something of a full-time job for a while.

Meanwhile, the number and range of companies tying their pitches to the IoT has ballooned. I could probably tie sneakers to it… let’s see… the first commercial application of a special new rubber in the soles, the volume sales of which will provide the revenues necessary to research new elastomers in home widgets that can be connected to the IoT! Boom! “New Footwear Supports the IoT”

<sigh>

So I’m going to keep watching for and covering interesting IoT technology and companies doing new, unique things that can clearly demonstrate a substantial IoT connection. (Like today’s M2M discussion of DDS.) But for the moment, characterizing all the companies claiming an IoT connection feels a tad too quixotic. I hate embarking on something and then backing off… but… there you have it.

Figure.png

Leave a Reply

featured blogs
Apr 16, 2024
In today's semiconductor era, every minute, you always look for the opportunity to enhance your skills and learning growth and want to keep up to date with the technology. This could mean you would also like to get hold of the small concepts behind the complex chip desig...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Silence of the Amps: µModule Regulators
In this episode of Chalk Talk, Amelia Dalton and Younes Salami from Analog Devices explore the benefits of Analog Devices’ silent switcher technology. They also examine the pros and cons of switch mode power supplies and how you can utilize silent switcher µModule regulators in your next design.
Dec 13, 2023
17,272 views