editor's blog
Subscribe Now

Harvesting Microwaves

We have just looked at an approach to wireless power transfer using low MHz electromagnetic field oscillations. But such a concept is only “power transfer” if the whole reason for the signal in the first place is to transfer power. If such a signal exists for some other reason – like communications – then doing the exact same thing wouldn’t be power transfer: It would be energy harvesting.

And indeed folks are trying to harvest energy out of all of the waves running rampant through our environment. The issue is efficiency, however, and you don’t really see a lot of practical discussion of this type of harvesting as being on its way to commercialization.

But there are some interesting things going on. And they involve “metamaterials” – artificial matter that can achieve characteristics – like a negative index of refraction or negative permittivity – that aren’t possible in nature. We took a look at some of these a couple years ago.

I have tended to think of metamaterials as the careful stacking and arranging of materials at the nano level; apparently that’s not always the case. Some folks at Duke University created a microwave energy harvester using a macro-sized metamaterial.

The fundamental unit of this “material” is the split-ring resonator. These can be very small, and would need to be on the order of 10s of nanometers across to respond to optical wavelengths, but the one Duke used was not that small: the outer diameter was 40 mm, and the gap was 1 mm. It was tuned for 900-MHz resonance.

Split_ring_resonator.png

 

Image courtesy ??(Wikipedia contributor)

My initial thought was that these were made out of a metamaterial, but no: they’re made out of copper, and an array of these becomes the resonator. They used five of them (5×1 array) in their experiments.

It’s interesting to me that one of these rings bears a remarkable resemblance to the structure that WiTricity uses as source and capture resonators, albeit at lower frequencies. I suspect that’s no accident.

While simulation suggested they might get into the 70% efficiency range, their results were closer to 37%. There wasn’t really an explanation of that discrepancy; I’m going to assume that will be the focus of more work.

You can read more details about their work in their paper (PDF).

Late update: there’s another “out of thin air” technology that’s more than harvesting. It will be the topic of a future piece

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Littelfuse Protection IC (eFuse)
If you are working on an industrial, consumer, or telecom design, protection ICs can offer a variety of valuable benefits including reverse current protection, over temperature protection, short circuit protection, and a whole lot more. In this episode of Chalk Talk, Amelia Dalton and Pete Pytlik from Littelfuse explore the key features of protection ICs, how protection ICs compare to conventional discrete component solutions, and how you can take advantage of Littelfuse protection ICs in your next design.
May 8, 2023
41,791 views