editor's blog
Subscribe Now

Engineering GaN Wafers

We talked before about wide bandgap materials such as GaN and SiC, but how are the base wafers for those materials created? Full wafers of expensive material would be, well, expensive. But if you grow or somehow affix the material on a base material of some other sort, you run the risk of having thermal issues at the boundary (at the very least).

Sumitomo and Soitec announced a joint approach recently that provides a GaN layer on top of some other substrate. The key is that this substrate is thermally matched to GaN. Of course, when I inquired as to the nature of the material, I found it was this mystery material that seems to be common to a huge number of projects: the material is called “proprietary.”

The method of creating the GaN on top of this takes a page from how Soitec creates SOI base wafers, with their SmartCut process. If you haven’t heard about it before, it’s interesting. The concept is that, in this case, Sumitomo sends them a pure GaN wafer. Soitec provides the base and then slices off a thin layer of GaN and affixes it to the base wafer. So one GaN wafer gets sliced many many times and ends up serving a large number of actual used wafers, stretching the GaN material as far as it will go.

So you might wonder, how do you slice off such a thin layer? Here’s what they do: first they implant hydrogen into the top of the GaN wafer down to the thickness of the layer they want to cut off. They then turn this wafer upside down and affix it to the base wafer, so now you have two wafers bonded together face-to-face.

They then use heat to create bubbles at the layer where the hydrogen is; this causes cracking along that seam, and the GaN bulk wafer comes off, leaving just the thin layer attached to the new base material. A little spit and polish and you’re good to go.

They had done this with 2” wafers before; their recent announcement demonstrates scaling to 4” and 6” wafers. You can find more in their release.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,119 views