editor's blog
Subscribe Now

Connecting CNTs to Metal

One of the things about CNTs acting as transistors is that the current flowing through them has to get into and out of the CNT from some other substance – typically metal. That junction, as it turns out, can have significant resistance. According to a paper done by a team from Georgia Tech and MIT (Songkil Kim et al), for a single-walled CNT (SWCNT) to connect to metal, there’s a quantum limit of around 65 kΩ.

Multi-walled CNTs (MWCNTs) can provide much lower-resistance connections, but how low depends on how you do it. Sputtering or evaporation only gets you to 3-4 kΩ best case, with no contamination. You can get as low as 700 Ω using TEM-AFM and nano-manipulation + joule heating, but this isn’t a viable commercial process.

The team used E-beam-induced deposition (EBID), which is essentially a localized CVD, where the gas is decomposed with great control using an electron beam. The overall process consists of first graphitizing amorphous carbon and then forming the connections.

Annealing amorphous carbon into graphite proved something of a challenge. They tried using a current to create joule heating, but it was tough to control: as the annealing progressed, the resistance went down, driving up the current and leading to runaway that could cause damage. So they went to an oven instead. They had to keep the temperature at 350 °C, the temperature at which graphitization starts, to keep the CNTs from oxidizing at higher temperatures.

In order to connect the multiple walls that were formed to metal, they directed the e-beam near the connection point. At first they aimed slightly short of the connection, using the backscatter to connect the inner walls – kind of like a basketball layup. Then they focused directly on the connection to finish it up.

This was followed up by an anneal.

The results were as follows:

  • Before making the contact, resistance was in the GΩ range.
  • If only the outer wall was connected, they got a 3.8-kΩ connection.
  • The EBID process alone brought the resistance from GΩ to 300 kΩ.
  • A 10-minute anneal at 350 °C brought the resistance down to 1.4 kΩ.
  • A further 20-25 minutes of annealing brought the resistance all the way down to 116 Ω.

Note that, to the best of my knowledge, this process was not used by the team that created the first CNT sub-systems recently reported at ISSCC.

You can find out more details in the published paper, but note that it’s behind a paywall.

Leave a Reply

featured blogs
Mar 27, 2025
I have to say that I've been blown away by the quality of the sound from my bone conduction headphones from H2O Audio (they even work if you're swimming)....

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,179 views