feature article
Subscribe Now

Cheap Chip-Keeping

Actel’s $1.20 System Management Solution

System Management has historically been a topic of concern for high-end systems.  For designers of low-cost, single-board applications, “system management” often consisted of a couple of 9V battery clips, an FET, an LED, and some bailing wire.  However, the proliferation of sophisticated technology into low-end systems, combined with the increasingly urgent need for power efficiency, has moved true system management issues right down into the realm of the single-boarders.

Many single board systems today are getting into big-league system management requirements with multiple power supplies in a variety of voltages, power management, thermal monitoring and management, complex power sequencing during events like startup and shutdown, and system-level clocking.  These tasks often require analog monitoring and control capabilities such as identifying and responding to alert conditions.  System management is also tasked with logging alarms and events, closed-loop control, and diagnostics and prognostics.

Unfortunately, most system management solutions have been created with the big-BOM mentality.  $10-$30 worth of system management hardware is inconsequential in a design with two or three high-end FPGAs, a bunch of expensive memory, and assorted other exotic components and connectors.  However, if you’re in the cheap board or high-volume crowd, such expensive system management solutions send you searching for alternatives.  MCUs, system management ASSPs, and home-crafted solutions built from discrete analog parts all get pressed into action on a regular basis, but each has its shortcomings. 

If an ASSP exists for your specific application, of course it will be cost-effective, but if you deviate from the center-line of the ASSP’s intended system, you’ll run into serious issues trying to bend an inflexible product to meet your needs.  Homegrown analog solutions can stack a lot of components onto your BOM and your board, and MCUs – while highly flexible, require a lot of additional support circuitry in order to boot themselves up and manage your system.

Actel is exploiting this niche of low-cost, low-power system management with their recent announcement of system management IP and reference designs for their Fusion non-volatile, mixed-signal FPGA family.  The new reference design takes about half of the smallest Fusion device, leaving copious resources available for other tasks on your board.  The company estimates that, given the price of Fusion devices in volume, only about $1.20 worth of logic resources are required for the new Fusion-based system management implementation.

The Actel solution is based on the company’s previously-announced CoreABC soft microcontroller – a very compact MCU implemented in Fusion’s flash-based FPGA fabric.  The MCU can be run from either Fusion’s embedded SRAM or embedded flash memory.  It is capable of very fast response times (<100ns) and is designed for deterministic operation – a nice feature if you don’t want your system management tasks accidentally blocked by something like your “demo” video game or power-on sound effects.

The system management reference design (which can be downloaded for free from the Actel website) supports intelligent power management – allowing you to monitor and optimize system power on multiple supply rails – up to four voltages and three currents.  It also supports a thermal monitor to track ambient system temperature.  On the control side, the design has five gate drivers for functions such as power sequencing and fan control.  Using these basic elements, you can code up your own system management implementation very quickly, and the resulting hardware requires fewer than 1100 FPGA “tiles” (Actel’s version of the basic FPGA logic cell). 

This type of application is probably just the tip of the iceberg in terms of the things we’ll see implemented in Actel’s novel mixed-signal FPGA technology.  The low-cost integration potential of these devices is huge, and an FPGA dropped on your board for a function like system management will likely, over time, start pulling in other functions as well.  Indeed, if you implement system management with the smallest Fusion device, more than half of the resources on the FPGA are still sitting there waiting for you to do something interesting with them.  That temptation usually leads to a little glue logic here and a little data stream conversion there and pretty soon, you’re buying a bigger FPGA because you need more space to hold all the parts of your board that you’re replacing.  Of course, that’s exactly what Actel wants you to do.

Leave a Reply

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,116 views