feature article
Subscribe Now

Racing for the Gap

Altera and Synopsys go Structured

As suppliers jockey for position in offering products that hit the gap between the flexibility and risk-free design offered by FPGA and the performance and unit-cost advantages of cell-based ASIC, unlikely alliances are inevitable. In this case, ASIC design tool leader Synopsys is teaming with leading FPGA vendor Altera to jointly develop solutions for the design and production of Structured ASICs.

Altera has long touted their HardCopy structured ASIC as a clean cost-reduction path from an FPGA-based development, prototype, and early production platform to a cost-reduced, performance-optimized mask-programmed equivalent. Altera is betting that the advantages of programmable logic for early development will compel design teams to consider their structured ASIC offering.

The announcement this week says that Synopsys’s Galaxy design platform can now target Altera FPGA devices and their HardCopy structured ASIC counterparts, and that Synopsys Professional Services will support Altera’s HardCopy design centers. The partnership with Synopsys means that design teams already using Synopsys tools for ASIC design will have one less barrier to adopting an FPGA design methodology for future projects.

As Altera and other FPGA vendors diversify beyond their traditional applications and customer base, they are seeking ways to reduce unit cost, increase performance, and cut power consumption taking them closer to the capabilities of high-end ASIC while maintaining their substantial advantages in risk, schedule, flexibility, and design-cost. Altera’s strategy is somewhat unique among FPGA vendors as they are taking a mask-programmed approach similar to the ASIC suppliers rather than focusing on reducing the cost of a programmable logic fabric like rival Xilinx has with their Virtex-4 platform announced this week.

In going after the traditional ASIC market, Altera should gain leverage by partnering with Synopsys, whose synthesis and implementation tools are long time standards in the ASIC business. As ASIC designers look for alternatives to full cell-based implementation, the prospect of using their established design tools and methodologies, targeting an FPGA platform for development and prototyping, and cost-reducing with a low-risk, low-NRE path to a mask-programmed device should be quite attractive.

This also represents a move by Synopsys against synthesis rival Synplicity who has already staked a substantial claim and an early lead in the structured ASIC market. Synplicity already has a strong and visible track record in structured ASIC, partnering with silicon vendors and offering tools that leverage Synplicity’s FPGA experience and customer base. Structured ASIC represents one of the first markets where both companies are likely to compete on more equal footing as Synopsys has long been dominant in ASIC while Synplicity has dominated FPGA and neither has made a significant dent in the other’s dominance.

For both Synopsys and Altera, this agreement also represents a strategic alliance that helps them in diversifying into the others’ customer base in a complementary way. For a supplier of tools primarily to the cell-based ASIC market like Synopsys, it gives an opening to sell products to the larger, more diverse FPGA and structured ASIC market. For Altera, it represents cleaner access to the cell-based ASIC team by eliminating tool incompatibility as a barrier to adoption.

This assault on “the gap” is intensifying from all sides now, both in the silicon fabric space as well as the EDA space. More and more vendors are realizing that none of the current options squarely hits the sweet spot that many customers seek, and in the coming months we will see a variety of strategies to capture the lucrative eye of the custom logic hurricane.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,124 views