industry news
Subscribe Now

Imec reveals method of damage free cryogenic etching of ultralow-k dielectrics

SEMICON WEST, San Francisco (USA) – July 09, 2013 – Imec today announced a cryogenic etching method that protects the surface of porous ultralow-k dielectrics against excessive plasma induced damages.

As semiconductor technology scales below the 20nm node, the capacitance increases between nearby conductive portions of high-density integrated circuits, resulting in loss of speed and cross-talk of the device. To control the increase in capacitance in deeply-scaled devices, insulating layers of porous low-k dielectrics are integrated through plasma etching. However, plasma etching exposes the dielectrics to active plasma radicals that penetrate deeply into the porous substrate, which then react and change the composition of the dielectric.

To bypass such damages, imec developed a new cryogenic etching method. By applying very low (cryogenic) temperatures during etching, a condensation of etch products in the pores of the low-k material, results in a protection of the dielectrics’ surface. Imec demonstrated the method on a porous organosilicate (OSG) film. The results showed that no carbon depletion occurred when the wafer temperature remained below a certain critical level during plasma etching.

“Our cryogenic etch method solves a key issue to further advancing scaling limits. It overcomes the disadvantages of current methods used to reduce plasma induced damage, such as dielectric etch at regular temperatures or low-k repair or high temperature pore stuffing, and it enables sub k=2.0 materials for integration,” stated Zsolt Tokei, program director interconnect at imec. “Our method is a true solution to further drive the development of next-generation, deeply-scaled technologies”.

Imec exhibits at SEMICON West, July 9-11, 2013. To learn more about imec and its new cryogenic etching method, please visit booth 1741, South hall.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of more than 2,000 people includes more than 650 industrial residents and guest researchers. In 2012, imec’s revenue (P&L) totaled 320 million euro. Further information on imec can be found at www.imec.be.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,124 views