industry news
Subscribe Now

Element Six Increases Volume Manufacturing of Synthetic Diamond Optical Components in Silicon Valley; An Enabler for Laser Produced Plasma Extreme Ultraviolet Lithography

SAN FRANCISCO—Feb. 4, 2013—At SPIE Photonics West 2013, Element Six, the world leader in synthetic diamond supermaterials and member of the De Beers Group of Companies, today announced its Silicon Valley facility has expanded its high volume manufacturing capabilities of synthetic diamond optical windows, a critical component of Laser Produced Plasma (LLP) Extreme Ultraviolet (EUV) lithography systems. Reaching a new milestone in Chemical Vapor Deposition (CVD) synthesis and processing, Element Six has increased its total production capacity of synthetic diamond wafers by 50 percent at its U.S. location, further scaling the company’s worldwide operations to deliver large volumes of optical windows to meet growing market demand.

“EUV lithography represents a major technological advancement for next-generation semiconductor manufacturing, enabling sub 22 nm(1xnm) technology nodes for both logic and memory devices,” said Adrian Wilson, head of technologies at Element Six. “We believe Element Six’s synthetic diamond optical windows are an accessible alternative to traditional optical materials, and the only commercially viable material to support LLP EUV lithography—reducing system downtime and improving wafer throughput.”

Addressing system designers’ most challenging and extreme specifications, Element Six grows large synthetic diamond windows (71-80mm in diameter) for high-power (20+kW) CO2 lasers, with larger diameters available for other optical applications. Given its unique properties, synthetic diamond is the only material to withstand the power levels necessary for high-throughput EUV processing, thereby increasing the productivity and cost-efficiency of the systems. Additionally, Element Six develops the industry’s flattest windows (PV <?/20 @633nm) to ensure less wavefront distortion and optimal system efficiency.

Element Six’s high-quality synthetic diamond optical windows also deliver very low defect levels to ensure system performance is not compromised. Overall, its patented CVD synthetic diamond offers the broadest optical transmission spectrum, and highest known thermal conductivity and resistance to thermal shock—critical properties for high-demanding applications such as EUV.

As manufacturers worldwide ramp up EUV lithography capabilities, Element Six’s high-volume manufacturing facilities in Silicon Valley, Ascot in the U.K., and Cuijk in the Netherlands, will ensure Element Six is able to meet customer requirements. Applying more than 50 years of technical and volume manufacturing experience, Element Six provides more than 3,000 customers worldwide with extreme performance solutions which improve productivity, reduce energy consumption and enable leaps in technology never previously considered in a multitude of applications.

If you’re interested in learning more about synthetic diamond’s diverse properties and optical applications, please visit Element Six’s booth #4203 at Photonics West. Or, learn more at www.e6.com/optical

About Element Six

Element Six is a synthetic diamond supermaterials company. Element Six is a member of the De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K.

Element Six supermaterial solutions are used in applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are already opening up new applications in a wide array of industries such as optics, power transmission, water treatment, semiconductors and sensors.

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,467 views