industry news
Subscribe Now

Imec First to Demonstrate Nanophotonics Components on 300mm Silicon Photonics Wafers Using Optical Lithography

SEMICON WEST (San Francisco, USA) – July 9, 2012 – Imec today announces the world-first realization of functional sub-100nm photonics components with optical lithography on 300mm silicon photonics wafer technology. Using 193nm immersion lithography, imec achieved the lowest propagation loss ever reported in silicon wire waveguides, and succeeded in patterning simpler and more efficient fiber couplers. Imec’s achievement is an important step in bringing Si photonics technology in line with CMOS industry standards.

Imec’s industrial affiliation program on optical I/O explores the use of photonics solutions for realizing high-bandwidth I/O in high performance computing systems. The program is developing Si photonics processes, devices and circuits using state-of-the-art CMOS fabrication processes. Until now, many nanophotonics components have only been demonstrated using lab-scale techniques such as e-beam lithography. Imec succeeded to demonstrate functional Si nanophotonics devices on industry-compatible 300mm wafers using 193nm immersion lithography and 28nm CMOS processes. This achievement is crucial in bringing Si photonics technology to CMOS industry adoption.

The optical waveguides on 300mm wafers have a very low propagation loss well below 1dB/cm. Moreover, imec patterned sub-wavelength features and demonstrated optical fiber-chip couplers using 193nm immersion lithography. By applying 193nm immersion lithography for patterning waveguides as well as fiber couplers, imec eliminated one patterning step in the processing of photonics devices. This resulted in a significant reduction of the processing cost. By demonstrating low phase errors on 450nm arrayed waveguide gratings, imec’s patterning platform using 45nm mask technology and 193nm immersion lithography has proved it can yield a very uniform waveguide width within a device.

“Imec’s results are an important step in bringing Si photonics technology in line with CMOS industry standards,” said Philippe Absil, Director of the optical I/O program at imec. “Our achievement with 193nm immersion lithography and 28nm CMOS processes on 300mm wafers is an important step in Si photonics development to demonstrate the manufacturability of highly integrated components. Possible applications are next-generation short-reach interconnects, which we expect to go into manufacturing by 2015.”

These results were obtained in cooperation with INTEC, imec’s associated lab at the Ghent University, and with imec’s key partners in its core CMOS programs Globalfoundries, INTEL, Micron, Panasonic, Samsung, TSMC, Elpida, SK Hynix, Fujitsu, Toshiba/Sandisk, and Sony.

Left (top) Deeply etched sub-wavelength photonic crystal fiber-chip coupler and (bottom) its coupling efficiency in comparison to standard ine/space grating based fiber-chip couplers, right (top) Photonic wire direction couplers with 100 nm coupling gap and (bottom) propagation loss of photonic wire.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Implementing Infineon's CoolGaN™: Key Essentials and Best Practices -- Infineon and Mouser
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Zobair Roohani from Infineon and Amelia Dalton explore the fundamentals and characteristics of wide band gap materials. They also investigate why the higher band gap and higher electric field withstanding capability of GaN brings us closer toward that ideal switching technology and the unique design challenges one must pay attention to when driving GaN devices.  
Dec 12, 2024
6,756 views