industry news
Subscribe Now

Imec presents MEMS energy harvester suitable for shock-induced energy harvesting in car tires

Washington, DC, and Leuven, Belgium – December 7, 2011 – At today’s 2011 IEEE International Electron Devices Meeting (IEDM) Imec and Holst Centre announced that they have made a micromachined harvester for vibration energy with a record output power of 489µW. Measurements and simulation show that the harvester is also suited for shock-induced energy harvesting in car tires, where it could power built-in sensors. In a tire, at 70km/h, the new device can deliver a constant 42µW, which is enough to power a simple wireless sensor node. These results, obtained within the research centre’s program for Micropower Generation and Storage, are presented at the 2011 IEEE International Electron Devices Meeting (IEDM) in Washington (December 7-9).

Imec’s innovative harvester consists of a cantilever with a piezoelectric layer sandwiched between metallic electrodes, forming a capacitor. At the tip of the cantilever a mass is attached, which translates the macroscopic vibration into a vertical movement – putting strain on the piezoelectric layer and generating a voltage across the capacitor. As piezoelectric material, AlN (aluminum nitride) was chosen. The harvesters are packaged with a 6-inch wafer scale vacuum packaging process. The micromachining production process is compatible with low-cost mass-production fabrication.

The harvester has a record output power of 489µW when the vibrations closely match the MEMS’ resonance vibration, which in this case is 1011Hz. Together with an automotive partner, imec also validated the use of the harvester for use in car tires. These submit the harvester to regular shocks, depending on the car’s speed and the characteristics and condition of the tire. Each shock will displace the mass, after which it will start to ring down at its natural resonance frequency. During this ring-down period, which depends on the quality factor Q of the harvester, part of the mechanical energy is harvested. It is shown that in this way, a constant power output as high as 42µW can be harvested at a speed of 70km/h.

Micromachined vibration harvesters such as these are ideal devices to generate electricity from machines, engines and other industrial appliances which vibrate or undergo repetitive shocks. In these environments, they will power miniaturized autonomous sensor nodes, in situations where battery replacement is not sustainable or practical. Harvesters will allow sustainable monitoring on a massive scale. One example is Tire Pressure Monitoring Systems (TPMS) and its successors: a car tire with built-in sensors that monitor e.g. the tire integrity and pressure, the road condition, or the driving style.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec’s revenue (P&L) was 285 million euro. Further information on imec can be found atwww.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research. Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 150 employees from around 25 nationalities and a commitment from more than 30 industrial partners.  Visit us at www.holstcentre.com

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Advances in Solar Energy and Battery Technology
Sponsored by Mouser Electronics and onsemi
Passive components will play an important part in the next generation of solar and energy storage systems. In this episode of Chalk Talk, Amelia Dalton, Prasad Paruchuri from onsemi, Walter Fusto from WĂĽrth Elektronik explore trends, challenges and solutions in solar and energy storage systems. They also examine EMI considerations for energy storage systems, the benefits that battery management systems bring to these kinds of designs and how passive components can make all the difference in solar and energy storage systems.
Aug 13, 2024
54,624 views