industry news
Subscribe Now

ZMDI 14-Bit Capacitive Sensor Conditioning IC Raises Bar on Accuracy, Linearity, and Temperature for Pressure Sensors

  • ZSSC3123 low power capacitive sensor conditioning IC enables first-pass calibration
  • Delivers 14-bit resolution and 0.25 % accuracy
  • Low power consumption at 60uA with sleep mode to lower to <1uA
  • Available today at 2.65 EUR, or USD 3.71, for 1kpc

Dresden, Germany — October 5, 2011 – ZMD AG (ZMDI), a global supplier of energy-efficient analog and mixed-signal solutions for automotive, industrial, and medical applications, has expanded its family of capacitive sensor signal conditioning devices with the wide-dynamic-range ZSSC3123 integrated circuit (IC).  The chip delivers 14-bit resolution and 0.25 % accuracy over a wide range of sensor capacitances and temperatures. Target applications include low power battery driven sensor applications, sensors for humidity, weight scales, load and compression sensing, as well as tension control.

Capacitive sensors are often favored for their small size and lower power consumption. The ZSSC3123, designed for low-power operation, complements these features and provides to designers an optimal solution for their system designs. The device is particularly suited for MEMS-based sensor elements, such as pressure sensors for hydraulic control systems, humidity sensors, and liquid level gauges. 

“Responding to sensor system designer needs, we have developed a digital technique to correct both first-order and third-order nonlinearity errors that were difficult or impossible to correct with a pure analog signal path,” stated Steve Ramdin, Product Manager at ZMDI. “Third-order correction is especially useful in humidity and pressure applications, but it can correct for sensor imperfections in almost any situation.”

The ZSSC3123 connects to microcontrollers but can also be utilized in stand-alone designs for transducer and switch applications.  The ZSSC3123 features an operating current as low as 60uA over the entire voltage range of 2.3V to 5.5V.  A built-in sleep mode lowers the current consumption to <1uA for temperatures up to 85°C.

The ZSSC3123 can be configured to interface with capacitive sensors from 0.5 to 260 pF, with sensitivity as low as 125 atto-Farads (aF) per digital bit. The part can be used in both single- and differential-input sensor configurations. The device offers a full 14-bit resolution for compensation of sensor offset, sensitivity and temperature. 

All calibration is digital and completed in one pass, eliminating the cost of laser trimming, and speeds up calibration of sensor modules in production. Programming and single-pass calibration of the capacitive sensor and the ZSSC3123 is accomplished through a standard PC environment using the ZSSC3123 kit and development tools. The kit includes a TSSOP14, development board, USB cable and calibration software.

At the standard supply voltage of 2.3 to 5.5 V, the device is accurate to 0.25 % over the -20 to +85°C range, and 0.5 % from -40 to +125°C. The ZSSC3123 part provides I2C and SPI interfaces as well as PDM or alarm outputs.

The ZSSC3123 is available in production. Unit prices start at 2.85 EUR, or USD 3.82, in volumes of 1k devices.  More information is available at www.ZMDI.com.

About ZMDI

Zentrum Mikroelektronik Dresden AG (ZMDI) is a premier supplier of innovative energy efficient analog and mixed-signal semiconductors for the automotive, mobile medical, industrial automation, and consumer markets. The Company’s application-specific standard products (ASSPs) and application-specific integrated circuits (ASICs) are known for their robust, cost-effective performance in demanding environments characterized by high temperature, high voltage, and the need for ultra-low power. Headquartered in Dresden, Germany, ZMDI has 280 employees worldwide and serves customers from its offices in Dresden, Stuttgart, Germany; Milan, Italy; Pocatello, ID, Melville, NY; Tokyo, Japan, Seoul, Korea and Taipei, Taiwan. ZMDI has design centres in Dresden, Stuttgart, Munich, Germany; Varna, Bulgaria and Madison, Wisconsin. See more at www.zmdi.com.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Accelerating Tapeouts with Synopsys Cloud and AI
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Vikram Bhatia from Synopsys explore how you can accelerate your next tapeout with Synopsys Cloud and AI. They also discuss new enhancements and customer use cases that leverage AI with hybrid cloud deployment scenarios, and how this platform can help CAD managers and engineers reduce licensing overheads and seamlessly run complex EDA design flows through Synopsys Cloud.
Jul 8, 2024
44,217 views