feature article
Subscribe Now

A Synthetic Gyroscope

Kionix Offers a Gyroscope Without the Burdens of a Gyroscope

I have a theory about people. They can be over-simplistically divided into two groups that I refer to as “differentiators” and “integrators.”

This comes from basic calculus. You may recall that derivatives are very sensitive: small changes in a function can create wild changes in the derivative, and each successive derivative can freak out even faster. Integrals, on the other hand, react very slowly to change.

We all know those people with short attention spans. They’re quick to notice change and react – or overreact. They have little patience for letting a plan work before giving up and trying something else. On the other hand, when something changes, they’re on it immediately. These are the differentiators.

Then there are the opposite types: patient, with an eye on the long-term. They tend to ignore short-term perturbations as just that (at risk of dismissing important events), and they’ll give a plan a long time to prove either that it works or doesn’t work. Sometimes too long. For the record, I normally consider myself one of these (although I reserve a special differentiator mode for those occasional freak-out moments).

Ideally, a combination of both works best: someone with a patient long-term view and someone to guard against complacency or to shake things up. As long as they trust each other.

This has been the nature of the relationship between MEMS gyroscopes and magnetometers. The gyroscope is a differentiator: it’s highly sensitive. But it’s also noisy and subject to drift in the long term. By contrast, the magnetometer does a good job keeping a long-term eye on magnetic north (checking in with the gyro and/or accelerometer to cross-check magnetic anomalies), but it reacts more slowly to quick changes in heading. It’s not completely insensitive (and increased sensitivity for a new product can be a selling point), but it lags behind the gyro in reactivity. So the two work well together – one for sensitivity, one for long-term stability.

The problem here is that gyroscopes tend to be power-hungry. Unlike their IMU siblings, their internal elements have to be set in motion to detect angular change; they can’t work passively. For power-sensitive designs, this can be a problem.

As I noted a couple of months ago, an accelerometer can detect the changes in direction that a gyroscope gives you – assuming a fixed frame such that the direction of travel is also the heading. In that case, you could probably do without a gyroscope altogether (there’s a lurking question about the ability to detect yaw that I will dig into further at a future time). Another approach is to put the gyroscope to sleep and then let the accelerometer wake it up when movement is detected.

But at this week’s International CES, Kionix announced an “emulated” or “synthetic gyroscope.” The new KMX61G comes with an accelerometer and a magnetometer; it uses sensor fusion to create the impression of a gyroscope. It’s nine axes for the “cost” of six. The benefit: you don’t need a power-hungry real gyro, and your power drops by 80-90%. The downside: you don’t get the same performance as you might have with a real gyro.

This triggers two big questions for me – one technical, the other business. From a technical standpoint, this seems theoretically straightforward as long as the accelerometer and magnetometer are both of very high quality – that is to say, low noise. The accelerometer has already achieved that noise performance; the magnetometer (which they get from Aichi) has now gotten there as well, so the fundamental capability (which has apparently been brewing for a while) is now enabled.

But what about the ability to reject magnetic anomalies? Fixed anomalies can be calibrated out at manufacturing, so that’s not the issue. It’s the ones that you pass by that have to be identified. Without an actual gyro to cross-check with, this becomes a much harder problem. And it’s the key to making this work.

While they guard the details of their algorithms closely, they explain at a high level that they do this heuristically as part of their sensor fusion. So, for example, if a magnetic field is detected with a specific varying nature, it might be identified as power line interference and rejected. If the field is too strong, then clearly it’s not the earth’s field. If a phone with a synthetic gyro is being used for gaming in some specific room with a given set of local field characteristics, then the local fields can be captured and normalized out, leaving the differential fields due to the motion of the phone. Et cetera.

This ability to reject anomalies is really the test of this approach. PNI Sensor’s founder and chairman George Hsu mentioned that they had tried this as well, but that anomaly rejection wasn’t good enough for them to provide the performance they were targeting.

Bottom line: it’s not going to work as well as a phone with a gyro, but Kionix is betting that it will be good enough in many cases. “Good enough for what?” you ask… And that brings us to the other part of the question. What are the applications for this?

First of all, it won’t work for navigation. But then again, according to Kionix, a phone can’t really be used for navigation anyway (unless fused with GPS, which typically disappears inside a building). It will largely be used for gaming – and less stringent gaming than a Wii, for example, since you will usually be looking at the screen rather than winging the thing around like a tennis racket. Think driving a car or flying a plane.

But this really gets more to the question that lurks quietly in phone circles, “What is the gyro in the phone good for anyway?” It’s there only because Mr. Jobs so decreed. But there’s precious little that gets done with it. And yet it adds cost and sucks the juice more than any other sensor on the phone.

As Kionix describes it, the pseudo-gyro provides a way for phone or tablet makers to carve out a mid-level market. Yeah, the gilded top-of-the-line stuff will have real gyros in them. But for lower-cost stuff, you can get some gyro behavior without the cost (in money and power) of the gyro. And they say that this isn’t just them dreaming up something to do with this technology: it’s something their customers have been requesting.

So the integrator is doing without the differentiator and will attempt to get the job done. Now that I think about it, it does seem like a job for an integrator with occasional freak-out capabilities. Maybe I should apply…

 

More info:

KMX61G announcement

KMX61G page 

Image courtesy of Wikimedia Commons/KSmrq

2 thoughts on “A Synthetic Gyroscope”

  1. “What is the gyro in the phone good for anyway?”

    Thinking on this, I do not think I have seen much gyro apps and I have seldom used the precious few that I have installed. I am not much of a gamer.

    The cool ones I have seen are Google sky and one on an iPhone 5 that shows shop/restaurant names as an overlay layer when one swings it around with the camera on.

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

AI/ML System Architecture Connectivity Solutions
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate a variety of crucial design considerations for AI and ML designs, the role that AI chipsets play in the development of these systems, and why the right connectivity solution can make all the difference when it comes to your machine learning or artificial intelligence design.
Oct 23, 2023
24,031 views