editor's blog
Subscribe Now

CogniVue Drives at Mobileye

iStock_000068339495_Small.jpgCogniVue recently made a roadmap announcement that puts Mobileye on notice: CogniVue is targeting Mobileye’s home turf.

We looked at Mobileye a couple years ago; their space is Advanced Driver Assistance Systems (ADAS). From an image/video processing standpoint, they apparently own 80% of this market. According to CogniVue, they’ve done that by getting in early with a proprietary architecture and refining and optimizing over time to improve their ability to classify and identify objects in view. And they’ve been able to charge a premium as a result.

What’s changing is the ability of convolutional neural networks (CNNs) to move this capability out of the realm of custom algorithms and code, opening it up to a host of newcomers. And, frankly, making it harder for players to differentiate themselves.

According to CogniVue, today’s CNNs are built on GPUs and are huge. And those GPUs don’t have the kind of low-power profile that would be needed for mainstream automotive adoption. CogniVue’s announcement debuts their new Opus APEX core, which they say can support CNNs in a manner that can translate to practical commercial use in ADAS designs. The Opus power/performance ratio has improved by 5-10 times as compared to their previous G2 APEX core.

You can find more commentary in their announcement.

 

Updates: Regarding the capacity for Opus to implement CNNs, the original version stated, based on CogniVue statements, that more work was needed to establish Opus supports CNNs well. CogniVue has since said that they’ve demonstrated this through “proprietary benchmarks at lead Tier 1s,” so I removed the qualifier. Also, it turns out that the APEX core in a Freescale device (referenced in the original version) isn’t Opus, but rather the earlier G2 version – the mention in the press release (which didn’t specify G2 or Opus) was intended not as testament to Opus specifically, but to convey confidence in Opus based on experience with G2. The Freescale reference has therefore been removed, since it doesn’t apply to the core being discussed.

Leave a Reply

featured blogs
Apr 4, 2025
Gravitrams usually employ a chain or screw lift to hoist their balls from the bottom to the top, but why not use a robot?...

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,168 views