editor's blog
Subscribe Now

Switching Power Supplies Revamped

Bric_pic.jpgA big change is coming to a power supply near you.

At least, that’s what Semitrex is promising with their new TRONIUM family of power supply systems on a chip (PSSoCs). They’re doing some things differently, resulting in lower-power – and, in particular, lower-“vampire”-power – bricks.

The first difference is that they’re going capacitive; there’s no transformer. How do they handle breakdown issues? By using a cascade of smaller capacitors (which they say also reduces electromagnetic interference (EMI) ). They have an array, and they pick the caps to suit the necessary breakdown.

They haven’t been able to completely eliminate inductors, since the high-current caps they need require non-standard processing (apparently, the breakdown voltage is tied to RDSon, and they need to decouple that). They’re working with fabs on that one. So the caps are used for “pre-regulation.”

The second big change is how they do the sensing needed for control. These switching converters use pulse-width modulation to control the in/out voltage ratio, and – for no good reason, according to Semitrex – the sensing required for that control loop has traditionally been on the secondary side.

These more traditional units used transformers for isolation, meaning the primary and secondary side were  mutually isolated. The control is on the primary side, so you need a way to get the secondary sense signal back across the transformer without an electrical connection; this was typically done with an opto-isolator.

Instead, Semitrex is doing the sensing on the primary side. This eliminates several components from the bill of materials. (Although, if there’s no transformer, there isn’t isolation … some of these details and diagrams are pending their filing of patents, so not all is clear.)

Finally, they’ve integrated most everything into a single module, reducing the number of external components required. The algorithms are built in (they have a state machine for low-level  control and a microprocessor for higher-level algorithms). This saves cost, hassle, and lowers power.

They’re targeting supplies in the 10-100-W range, 50-500 mA. They claim less than 1 mW of standby power, and the chip can respond to a load in 3-5 ns. You can think of the standby power as the vampire power when it’s sitting around doing nothing useful. For comparison, Semitrex says that today’s idle power supplies can burn more than 100 mW (100 mW is apparently an upcoming US Dept. of Energy efficiency standard that they say many supplies today cannot meet).

You can read more in their announcement.

 

PS They tried to put some pronunciation help in the press release, but I have to confess that it confused me more than helping. They use stress marks, but indicate primary stress on the first and second syllables (you can’t have primary stress on more than one syllable), and then they show the middle syllable in caps – another way to indicate primary stress. They also have a double-stress mark on the last syllable… that would normally mean extra stress, which can’t be right. If I ignore the stress marks, then it’s “tron-EE-um.” If that’s the case, I’m not sure that will stick – my guess is that, without hearing it, everyone is going to say “TROH-nee-um.” (Or, more formally, “’tron-i-um” or “tron’-i-um”, depending on whether you pre- or-post-mark stress… seems both ways are done…) But I digress…

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

SiC-Based High-Density Industrial Charger Solutions
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Prasad Paruchuri from onsemi explore the benefits of silicon carbide based high density industrial charging solutions. They investigate the topologies of Totem Pole PFC and Half Bridge LLC circuits, the challenges that bidirectional CLLC resonant DC-DC converters are solving today, and how you can take advantage of onsemi’s silicon carbide charging solutions for your next design.
May 21, 2024
37,625 views