editor's blog
Subscribe Now

QuickLogic Goes Wearable

We’ve looked at QuickLogic’s sensor hub solution in quite some detail in the past. It’s programmable logic at its heart, but is sold as a function-specific part (as contrasted with Lattice, who sells a general-purpose low-power part into similar applications). QuickLogic recently announced a wearables offering, which got me wondering how different this was from their prior sensor hub offering.

After all, it’s really kind of the same thing, only for a very specific implementation: gadgets that are intended to be worn. Which are battery-powered and require the utmost in power-miserliness to be successful.

You may recall that QuickLogic’s approach is an engine implemented in their programmable fabric. They’ve then put together both a library of pre-written algorithms and a C-like language that allows implementation of custom algorithms; in both cases, the algorithms run on that engine. So the question here is, did the engine change for the wearable market, or is it just a change in the algorithms?

QL_arch.png

Image courtesy QuickLogic

I checked in, and they confirmed that the engine has not changed – it’s the same as for the general sensor hub. What they have done is focus the libraries on context and gesture algorithms most applicable to the wearables market.

Sometime back, we looked at how different sensor fusion guys approach the problem of figuring out where your phone is on you. A similar situation exists for wearables in terms both of classifying what the wearer is doing and the gadget’s relationship to the wearer. QuickLogic’s approach supports 6 different states (or contexts): walking, running, cycling, in-vehicle, on-person, and not-on-person.

They’ve also added two wearable-specific gestures for waking the device up either by tapping it or by rotating the wrist.

Critically, they do this with under 250 µW when active.

You can read more in their announcement.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,124 views