editor's blog archive
Subscribe Now

Planning PCB, Package, and Die Together

Silicon chips and the packages that house them have been steadily drawing closer to each other over the years. There are so many pins on individual dice now – and multiple dice are going into single packages. Optimizing which bumps from which dice go to which pins is a non-trivial project.

Part of the problem is that package design and die design have traditionally belonged to different departments using completely different tools that don’t talk to each other. That’s left engineers using Excel and such to try to visualize and plan pinouts.

< … Read More → "Planning PCB, Package, and Die Together"

An Optical MEMS Reference Process

A while back Micralyne announced a MEMS reference process. There are a few of these running around: attempts to achieve – or at least grasp at – a standard process that can address a wide range of MEMS devices.

Most of Micralyne’s processes are confidential, per their customer relationships, in typical MEMS style. What they did here was to take a “neutral” improved version of what they do well and open it up. They’re not sure that customers will simply line up and use that process in high-volume production outright, but … Read More → "An Optical MEMS Reference Process"

A Paper Battery… Not

Today’s note comes from the Department of Not What It Sounds Like. It’s about a company called Paper Battery, which doesn’t make batteries, and, what it does make isn’t made out of paper. The burdens of old names that stick…

What they do make is a supercapacitor. We’ve talked about supercaps before; there’s nothing revolutionary in concept. The story with PBC (much less confusing company name as an acronym… … Read More → "A Paper Battery… Not"

QuickLogic Goes Wearable

We’ve looked at QuickLogic’s sensor hub solution in quite some detail in the past. It’s programmable logic at its heart, but is sold as a function-specific part (as contrasted with Lattice, who sells a general-purpose low-power part into similar applications). QuickLogic recently announced a wearables offering, which got me wondering how different this was from their prior sensor hub offering.

After all, it& … Read More → "QuickLogic Goes Wearable"

Intelligent VIP

This year’s DAC included a discussion with Arrow Devices. They’re a company exclusively focused on protocol VIP. They’re not a tool company (other than, as we’ll see, their debug assistant); their VIP plugs into any of your standard tools.

There are three distinct angles they play: verification (making sure your design works in the abstract, before committing to silicon), validation (making sure the silicon works; they also include emulation models in this as well), and debug.

Their focus is on protocol abstraction: allowing verification to proceed at … Read More → "Intelligent VIP"

SiTime Adds Temperature Compensation

SiTime came out with a 32-kHz temperature-compensated MEMS oscillator a few weeks back, targeting the wearables market. 32 kHz is popular because dividing by an easy 215 gives a 1-second period. Looking through the story, there were a couple elements that bore clarification or investigation.

Let’s back up a year or so to when they announced their TempFlat technology. The basic concept is of a MEMS oscillator that, somehow, is naturally compensated against temperature variation without any circuitry required to do explicit … Read More → "SiTime Adds Temperature Compensation"

Improved FPGA Tool Results

A bit over a year ago, we looked at startup Plunify, who was marketing cloud-based FPGA tool instantiations. I talked to them again at the recent DAC, and they appear to be carrying out the typical modern startup roadmap, where you start with something, find out what people really do with it, and then use that information to drive new, and sometimes wholly different, products.

What they learned with their original offering was that the analytics module was really popular. So they figured … Read More → "Improved FPGA Tool Results"

Muscling Up

We’ve seen gesture recognition before, and the two major modes, if you will, are using cameras (either 2- or 3-D) to “see” and interpret gestures and using inertial sensors to detect hand motion and infer gestures.

Thalmic is about to launch its own gesture control armband, but they rely on a completely different source of information for detecting gestures: muscle movements. Or, more accurately, the electrical signals that govern muscle movement.

The measurement technique is called “electromyography” (EMG), and the device they’re building is called the Myo. … Read More → "Muscling Up"

A New IoT Platform: RuBAN

Yet another Internet of Things (IoT) “platform” was announced recently: the RuBAN platform by Davra Networks. I enclosed the term in quotes not to question specifically whether this is a platform, but just as a reminder that the term “platform” means little – or perhaps it means too much, since there are many of them, and they’re all different in function and scope.

RuBAN targets not the Consumer IoT (CIoT), nor does it address the manufacturing side of IIoT. They do target Things that haven’t been connected before, relying … Read More → "A New IoT Platform: RuBAN"

Wireless Power Progress: Efficiency and Distance

We met PowerByProxi recently when discussing wireless battery charging options. Well, they’ve recently announced what they claim to be a couple of milestones both in distance and charging power.

The distance metric has them able to charge in the “z” direction up to 30 mm away. That’s 3 cm; roughly an inch and a half. Which doesn’t actually seem that far, but, critically, since they can penetrate various construction materials, this means they can go through counters … Read More → "Wireless Power Progress: Efficiency and Distance"

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...