editor's blog
Subscribe Now

More Common-Process MEMS

Last year we took a look at a couple of proposals for universal processes from Teledyne/DALSA and CEA-Leti that could be used to make many different MEMS elements, trying to move past the “one product, one process” trap. We’ve also reported on the AMFitzgerald/Silex modular approach and their first device.

Well, the first design using CEA-Leti’s M&NEMS process has rolled out: a single MEMS chip with three accelerometers and three gyroscopes designed and implemented by Tronics. They’re not quite the smallest of the 6-DOF sensors, but they claim that, with more optimization, they will be. Right now their die size is 4 mm2. And they say that all main parameters are on track with their simulation models.

But this is just the first functional version; they’re going back to work some more while, at the same time, giving it a companion ASIC, releasing them at the end of this year.

They’re also using the same process to create a 9-DOF sensor set, with all of the sensors on a single MEMS chip. Also for release at the end of the year. And, the idea is, that, if they wanted to, they could also include a pressure sensor and a microphone, since they can all presumably be made on this same process. Yeah, you might wonder whether integrating a microphone with those other sensors has value; even if it doesn’t, being able to make it separately using the same process as the n-DOF chip still brings a huge level of manufacturing simplification.

These efforts, if successful, could represent a fresh breath of efficiency for some of the oldest sensors in the MEMS world. The industry also has new MEMS elements in the works, like gas sensors and such. If a standard process like this could be used for new sensors as well, then at some point new sensors could launch on standard processes rather than having to do the “one process” thing first like accelerometers and their ilk have done.

There are those who believe that these standard processes are too restrictive to allow the design of sensors with arbitrary characteristics. We’ll continue to keep an eye on this stuff to see whether these common-process skeptics can eventually be appeased or whether they’ll be proven correct.

Check out the details in Tronics’s release.

Leave a Reply

featured blogs
May 2, 2025
I can safely say that I've never seen a wheeled-legged robot that can handle rugged terrains, muddy wetlands, and debris-strewn ruins like this...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Power Inductor Considerations for AI Computing and High-Powered Processors
Sponsored by Mouser Electronics and Vishay
In this episode of Chalk Talk, Mariyah Sachak from Vishay and Amelia Dalton explore how various inductor solutions can supply near-instant power to demanding loads at low, core-level voltages for high power computing applications. They also investigate the benefits of Trans-Inductor voltage regulators and what you will need to consider when choosing the right inductor solution for your next design.
May 5, 2025
9,481 views