editor's blog
Subscribe Now

Harvesting Microwaves

We have just looked at an approach to wireless power transfer using low MHz electromagnetic field oscillations. But such a concept is only “power transfer” if the whole reason for the signal in the first place is to transfer power. If such a signal exists for some other reason – like communications – then doing the exact same thing wouldn’t be power transfer: It would be energy harvesting.

And indeed folks are trying to harvest energy out of all of the waves running rampant through our environment. The issue is efficiency, however, and you don’t really see a lot of practical discussion of this type of harvesting as being on its way to commercialization.

But there are some interesting things going on. And they involve “metamaterials” – artificial matter that can achieve characteristics – like a negative index of refraction or negative permittivity – that aren’t possible in nature. We took a look at some of these a couple years ago.

I have tended to think of metamaterials as the careful stacking and arranging of materials at the nano level; apparently that’s not always the case. Some folks at Duke University created a microwave energy harvester using a macro-sized metamaterial.

The fundamental unit of this “material” is the split-ring resonator. These can be very small, and would need to be on the order of 10s of nanometers across to respond to optical wavelengths, but the one Duke used was not that small: the outer diameter was 40 mm, and the gap was 1 mm. It was tuned for 900-MHz resonance.

Split_ring_resonator.png

 

Image courtesy ??(Wikipedia contributor)

My initial thought was that these were made out of a metamaterial, but no: they’re made out of copper, and an array of these becomes the resonator. They used five of them (5×1 array) in their experiments.

It’s interesting to me that one of these rings bears a remarkable resemblance to the structure that WiTricity uses as source and capture resonators, albeit at lower frequencies. I suspect that’s no accident.

While simulation suggested they might get into the 70% efficiency range, their results were closer to 37%. There wasn’t really an explanation of that discrepancy; I’m going to assume that will be the focus of more work.

You can read more details about their work in their paper (PDF).

Late update: there’s another “out of thin air” technology that’s more than harvesting. It will be the topic of a future piece

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

SiC-Based High-Density Industrial Charger Solutions
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Prasad Paruchuri from onsemi explore the benefits of silicon carbide based high density industrial charging solutions. They investigate the topologies of Totem Pole PFC and Half Bridge LLC circuits, the challenges that bidirectional CLLC resonant DC-DC converters are solving today, and how you can take advantage of onsemi’s silicon carbide charging solutions for your next design.
May 21, 2024
37,614 views