editor's blog
Subscribe Now

Harvesting Microwaves

We have just looked at an approach to wireless power transfer using low MHz electromagnetic field oscillations. But such a concept is only “power transfer” if the whole reason for the signal in the first place is to transfer power. If such a signal exists for some other reason – like communications – then doing the exact same thing wouldn’t be power transfer: It would be energy harvesting.

And indeed folks are trying to harvest energy out of all of the waves running rampant through our environment. The issue is efficiency, however, and you don’t really see a lot of practical discussion of this type of harvesting as being on its way to commercialization.

But there are some interesting things going on. And they involve “metamaterials” – artificial matter that can achieve characteristics – like a negative index of refraction or negative permittivity – that aren’t possible in nature. We took a look at some of these a couple years ago.

I have tended to think of metamaterials as the careful stacking and arranging of materials at the nano level; apparently that’s not always the case. Some folks at Duke University created a microwave energy harvester using a macro-sized metamaterial.

The fundamental unit of this “material” is the split-ring resonator. These can be very small, and would need to be on the order of 10s of nanometers across to respond to optical wavelengths, but the one Duke used was not that small: the outer diameter was 40 mm, and the gap was 1 mm. It was tuned for 900-MHz resonance.

Split_ring_resonator.png

 

Image courtesy ??(Wikipedia contributor)

My initial thought was that these were made out of a metamaterial, but no: they’re made out of copper, and an array of these becomes the resonator. They used five of them (5×1 array) in their experiments.

It’s interesting to me that one of these rings bears a remarkable resemblance to the structure that WiTricity uses as source and capture resonators, albeit at lower frequencies. I suspect that’s no accident.

While simulation suggested they might get into the 70% efficiency range, their results were closer to 37%. There wasn’t really an explanation of that discrepancy; I’m going to assume that will be the focus of more work.

You can read more details about their work in their paper (PDF).

Late update: there’s another “out of thin air” technology that’s more than harvesting. It will be the topic of a future piece

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Easily Connect to AWS Cloud with ExpressLink Over Wi-Fi
Sponsored by Mouser Electronics and AWS and u-blox
In this episode of Chalk Talk, Amelia Dalton, Lucio Di Jasio from AWS and Magnus Johansson from u-blox explore common pitfalls of designing an IoT device from scratch, the benefits that AWS IoT ExpressLink brings to IoT device design, and how the the NORA-W2 AWS IoT ExpressLink multiradio modules can make retrofitting an already existing design into a smart AWS connected device easier than ever before.
May 30, 2024
34,335 views